Voriconazole (voriconazole 50 mg) Dailymed
Generic: voriconazole is used for the treatment of Aspergillosis Candidiasis Pregnancy Fusariosis
IMPRINT: M164
SHAPE: oval
COLOR: white
All Imprints
voriconazole 200 mg oral tablet - m164 oval white
voriconazole 50 mg oral tablet - v26 oval white
Go PRO for all pill images
Recent Major Changes Section
 Warnings and Precautions, Photosensitivity (5.6 )       10/2022
1 Indications And Usage
Voriconazole tablets are an azole antifungal indicated for the treatment of adults and pediatric patients 2 years of age and older with:
• Invasive aspergillosis (1.1 )• Candidemia in non-neutropenics and other deep tissue Candida infections (1.2 )• Esophageal candidiasis (1.3 )• Serious fungal infections caused by Scedosporium apiospermum and Fusarium species including Fusarium solani, in patients intolerant of, or refractory to, other therapy (1.4 )1.1 Invasive Aspergillosis
Voriconazole is indicated in adults and pediatric patients (2 years of age and older) for the treatment of invasive aspergillosis (IA). In clinical trials, the majority of isolates recovered were Aspergillus fumigatus. There was a small number of cases of culture-proven disease due to species of Aspergillus other than A. fumigatus [see Clinical Studies (14.1 , 14.5) and Microbiology (12.4)].
1.2 Candidemia in Non-neutropenic Patients and Other Deep Tissue Infections
Voriconazole is indicated in adults and pediatric patients (2 years of age and older) for the treatment of candidemia in non-neutropenic patients and the following Candida infections: disseminated infections in skin and infections in abdomen, kidney, bladder wall, and wounds [see Clinical Studies (14.2, 14.5) and Microbiology (12.4)].
1.3 Esophageal Candidiasis
Voriconazole is indicated in adults and pediatric patients (2 years of age and older) for the treatment of esophageal candidiasis (EC) in adults and pediatric patients 2 years of age and older [see Clinical Studies (14.3, 14.5) and Microbiology (12.4)].
1.4 Scedosporiosis and Fusariosis
Voriconazole is indicated for the treatment of serious fungal infections caused by Scedosporium apiospermum (asexual form of Pseudallescheria boydii) and Fusarium spp. including Fusarium solani, in adults and pediatric patients (2 years of age and older) intolerant of, or refractory to, other therapy [see Clinical Studies (14.4) and Microbiology (12.4)].
1.5Usage
Specimens for fungal culture and other relevant laboratory studies (including histopathology) should be obtained prior to therapy to isolate and identify causative organism(s). Therapy may be instituted before the results of the cultures and other laboratory studies are known. However, once these results become available, antifungal therapy should be adjusted accordingly.
2 Dosage And Administration
• Dosage in Adults (2.3 )
Infection
Loading dose
Maintenance Dose
Intravenous infusion
Intravenous infusion
Oral
Invasive Aspergillosis
6 mg/kg every 12 hours for the first 24 hours
4 mg/kg every 12 hours
200 mg every 12 hours
Candidemia in nonneutropenics and other deep tissue Candida infections
3-4 mg/kg every 12 hours
200 mg every 12 hours
Scedosporiosis and Fusariosis
4 mg/kg every 12 hours
200 mg every 12 hours
Esophageal Candidiasis
Not Evaluated
Not Evaluated
200 mg every 12 hours
Â
o Adult patients weighing less than 40 kg: oral maintenance dose 100 mg or 150 mg every 12 hourso Hepatic Impairment: Use half the maintenance dose in adult patients with mild to moderate hepatic impairment (Child-Pugh Class A and B) (2.5 )o Renal Impairment: Avoid intravenous administration in adult patients with moderate to severe renal impairment (creatinine clearance < 50 mL/min) (2.6 )
Â
• Dosage in Pediatric Patients 2 years of age and older (2.4 )
o For pediatric patients 2 to less than 12 years of age and 12 to 14 years of age weighing less than 50 kg see Table below.
Infection
Loading Dose
Maintenance Dose
Intravenous infusion
Intravenous infusion
Oral
Invasive Aspergillosis
9 mg/kg every 12 hours for the first 24 hours
8 mg/kg every 12 hours after the first 24 hours
9 mg/kg every 12 hours (maximum dose of 350 mg every 12 hours)
Candidemia in nonneutropenics and other deep tissue Candida infections
Scedosporiosis and Fusariosis
Esophageal Candidiasis
Not Evaluated
4 mg/kg every 12 hours
9 mg/kg every 12 hours (maximum dose of 350 mg every 12 hours)
Â
o For pediatric patients aged 12 to 14 years weighing greater than or equal to 50 kg and those aged 15 years and older regardless of body weight use adult dosage. (2.4 )o Dosage adjustment of voriconazole tablets in pediatric patients with renal or hepatic impairment has not been established (2.5 ,2.6 )2.1 Important Administration Instructions for Use in All Patients
Administer voriconazole tablets at least one hour before or after a meal.
2.3 Recommended Dosing Regimen in Adults
See Table 1. Therapy must be initiated with the specified loading dose regimen of intravenous voriconazole on Day 1 followed by the recommended maintenance dose (RMD) regimen. Intravenous treatment should be continued for at least 7 days. Once the patient has clinically improved and can tolerate medication given by mouth, the oral tablet form or oral suspension form of voriconazole may be utilized. The recommended oral maintenance dose of 200 mg achieves a voriconazole exposure similar to 3 mg/kg intravenously; a 300 mg oral dose achieves an exposure similar to 4 mg/kg intravenously [see Clinical Pharmacology (12.3) ].
See Table 1. Patients should be treated for at least 14 days following resolution of symptoms or following last positive culture, whichever is longer.
See Table 1. Patients should be treated for a minimum of 14 days and for at least 7 days following resolution of symptoms.
Table 1: Recommended Dosing Regimen (Adults)
Infection
Loading Dose
Maintenance DoseIncrease dose when voriconazole is co-administered with phenytoin or efavirenz (7); Decrease dose in patients with hepatic impairment (2.5) In healthy volunteer studies, the 200 mg oral every 12 hours dose provided an exposure (AUCÏ„) similar to a 3 mg/kg intravenous infusion every 12 hours dose; the 300 mg oral every 12 hours dose provided an exposure (AUCÏ„) similar to a 4 mg/kg intravenous infusion every 12 hours dose (12).
Intravenous infusion
Intravenous infusion
OralAdult patients who weigh less than 40 kg should receive half of the oral maintenance dose.
Invasive AspergillosisIn a clinical study of IA, the median duration of intravenous voriconazole therapy was 10 days (range 2 to 85 days). The median duration of oral voriconazole therapy was 76 days (range 2 to 232 days) (14.1).
6 mg/kg every 12 hours for the first 24 hours
4 mg/kg every 12 hours
200 mg every 12 hours
Â
Candidemia in nonneutropenic patients and other deep tissue Candida infections
6 mg/kg every 12 hours for the first 24 hours
3-4 mg/kg every 12 hoursIn clinical trials, patients with candidemia received 3 mg/kg intravenous infusion every 12 hours as primary therapy, while patients with other deep tissue Candida infections received 4 mg/kg every 12 hours as salvage therapy. Appropriate dose should be based on the severity and nature of the infection.
200 mg every 12 hours
Â
Esophageal Candidiasis
Not EvaluatedNot evaluated in patients with EC.
Not Evaluated
200 mg every 12 hours
Â
Scedosporiosis and
Fusariosis
6 mg/kg every 12 hours for the first 24 hours
4 mg/kg every 12 hours
200 mg every 12 hours
If patient’s response is inadequate, the oral maintenance dose may be increased from 200 mg every 12 hours (similar to 3 mg/kg intravenously every 12 hours) to 300 mg every 12 hours (similar to 4 mg/kg intravenously every 12 hours). For adult patients weighing less than 40 kg, the oral maintenance dose may be increased from 100 mg every 12 hours to 150 mg every 12 hours. If patient is unable to tolerate 300 mg orally every 12 hours, reduce the oral maintenance dose by 50 mg steps to a minimum of 200 mg every 12 hours (or to 100 mg every 12 hours for adult patients weighing less than 40 kg).
If patient is unable to tolerate 4 mg/kg intravenously every 12 hours, reduce the intravenous maintenance dose to 3 mg/kg every 12 hours.
2.4 Recommended Dosing Regimen in Pediatric Patients
The recommended dosing regimen for pediatric patients 2 to less than 12 years of age and 12 to 14 years of age with body weight less than 50 kg is shown in Table 2. For pediatric patients 12 to 14 years of age with a body weight greater than or equal to 50 kg and those 15 years of age and above regardless of body weight, administer the adult dosing regimen of voriconazole tablets [see Dosage and Administration (2.3)].
Table 2: Recommended Dosing Regimen for Pediatric Patients 2 to less than 12 years of age and 12 to 14 years of age with body weight less than 50 kg Based on a population pharmacokinetic analysis in 112 immunocompromised pediatric patients aged 2 to less than 12 years of age and 26 immunocompromised pediatric patients aged 12 to less than 17 years of age.
Loading Dose
Maintenance Dose
Intravenous infusion
Intravenous infusion
Oral
Invasive AspergillosisIn the Phase 3 clinical trials, patients with IA received intravenous (IV) treatment for at least 6 weeks and up to a maximum of 12 weeks. Patients received IV treatment for at least the first 7 days of therapy and then could be switched to oral voriconazole therapy.
9 mg/kg every 12 hours for the first 24 hours
8 mg/kg every 12 hours after the first 24 hours
9 mg/kg every 12 hours (maximum dose of 350 mg every 12 hours)
Candidemia in nonneutropenics and other deep tissue Candida infectionsStudy treatment for primary or salvage invasive candidiasis and candidemia (ICC) or EC consisted of intravenous voriconazole, with an option to switch to oral therapy after at least 5 days of IV therapy, based on subjects meeting switch criteria. For subjects with primary or salvage ICC, voriconazole was administered for at least 14 days after the last positive culture. A maximum of 42 days of treatment was permitted. Patients with primary or salvage EC were treated for at least 7 days after the resolution of clinical signs and symptoms. A maximum of 42 days of treatment was permitted.
Scedosporiosis and Fusariosis
Espophageal Candidiasis
Not Evaluated
4 mg/kg every 12 hours
9 mg/kg every 12 hours
(maximum dose of 350 mg every 12 hours)
Initiate therapy with an intravenous infusion regimen. Consider an oral regimen only after there is a significant clinical improvement. Note that an 8 mg/kg intravenous dose will provide voriconazole exposure approximately 2-fold higher than a 9 mg/kg oral dose.
The oral dose recommendation for children is based on studies in which voriconazole was administered as the powder for oral suspension formulation. Bioequivalence between the voriconazole powder for oral suspension and voriconazole tablets has not been investigated in a pediatric population.
Oral bioavailability may be limited in pediatric patients 2 to 12 years with malabsorption and very low body weight for age. In that case, intravenous voriconazole administration is recommended.
Pediatric Patients 2 to less than 12 years of age and 12 to 14 years of age with body weight less than 50 kg
If patient response is inadequate and the patient is able to tolerate the initial intravenous maintenance dose, the maintenance dose may be increased by 1 mg/kg steps. If patient response is inadequate and the patient is able to tolerate the oral maintenance dose, the dose may be increased by 1 mg/kg steps or 50 mg steps to a maximum of 350 mg every 12 hours. If patients are unable to tolerate the initial intravenous maintenance dose, reduce the dose by 1 mg/kg steps. If patients are unable to tolerate the oral maintenance dose, reduce the dose by 1 mg/kg or 50 mg steps.
Pediatric patients 12 to 14 years of age weighing greater than or equal to 50 kg and 15 years of age and older regardless of body weight: Use the optimal method for titrating dosage recommended for adults [see Dosage and Administration (2.3)].
2.5Dosage Modifications in Patients With Hepatic Impairment
The maintenance dose of voriconazole tablets should be reduced in adult patients with mild to moderate hepatic impairment, Child-Pugh Class A and B. There are no PK data to allow for dosage adjustment recommendations in patients with severe hepatic impairment (Child-Pugh Class C).
Duration of therapy should be based on the severity of the patient’s underlying disease, recovery from immunosuppression, and clinical response.
Adult patients with baseline liver function tests (ALT, AST) of up to 5 times the upper limit of normal (ULN) were included in the clinical program. Dose adjustments are not necessary for adult patients with this degree of abnormal liver function, but continued monitoring of liver function tests for further elevations is recommended [see Warnings and Precautions (5.1)].
It is recommended that the recommended voriconazole loading dose regimens be used, but that the maintenance dose be halved in adult patients with mild to moderate hepatic cirrhosis (Child-Pugh Class A and B) [see Clinical Pharmacology (12.3)].
Voriconazole tablets have not been studied in adult patients with severe hepatic cirrhosis (Child-Pugh Class C) or in patients with chronic hepatitis B or chronic hepatitis C disease. Voriconazole tablets have been associated with elevations in liver function tests and with clinical signs of liver damage, such as jaundice. Voriconazole tablets should only be used in patients with severe hepatic impairment if the benefit outweighs the potential risk. Patients with hepatic impairment must be carefully monitored for drug toxicity.
Dosage adjustment of voriconazole tablets in pediatric patients with hepatic impairment has not been established [see Use in Specific Populations (8.4)].
2.6Dosage Modifications in Patients With Renal Impairment
The pharmacokinetics of orally administered voriconazole tablets are not significantly affected by renal impairment. Therefore, no adjustment is necessary for oral dosing in patients with mild to severe renal impairment [see Clinical Pharmacology (12.3)].
In patients with moderate or severe renal impairment (creatinine clearance < 50 mL/min) who are receiving an intravenous infusion of voriconazole, accumulation of the intravenous vehicle, SBECD, occurs. Oral voriconazole should be administered to these patients, unless an assessment of the benefit/risk to the patient justifies the use of intravenous voriconazole. Serum creatinine levels should be closely monitored in these patients, and, if increases occur, consideration should be given to changing to oral voriconazole therapy [see Warnings and Precautions (5.7)].
Voriconazole and the intravenous vehicle, SBECD, are dialyzable. A 4-hour hemodialysis session does not remove a sufficient amount of voriconazole to warrant dose adjustment [see Clinical Pharmacology (12.3)].
Dosage adjustment of voriconazole tablets in pediatric patients with renal impairment has not been established [see Use in Specific Populations (8.4) ].
2.7Dosage Adjustment When Co-Administered With Phenytoin or Efavirenz
The maintenance dose of voriconazole should be increased when co-administered with phenytoin or efavirenz. Use the optimal method for titrating dosage [see Drug Interactions (7) and Dosage and Administration (2.3)].
3 Dosage Forms And Strengths
Voriconazole Tablets are available containing 50 mg or 200 mg of voriconazole, USP.
• The 50 mg tablets are white to off-white, film coated, oval, unscored tablets debossed with V26 on one side and plain on the other.• The 200 mg tablets are white to off-white, film coated, capsule shaped, unscored tablets debossed with M164 on one side and plain on the other.
• Tablets: 50 mg, 200 mg (3 )
4 Contraindications
• Voriconazole tablets are contraindicated in patients with known hypersensitivity to voriconazole or their excipients. There is no information regarding cross-sensitivity between voriconazole and other azole antifungal agents. Caution should be used when prescribing voriconazole tablets to patients with hypersensitivity to other azoles.• Coadministration of pimozide, quinidine or ivabradine with voriconazole tablets is contraindicated because increased plasma concentrations of these drugs can lead to QT prolongation and rare occurrences of torsade de pointes [see Drug Interactions (7)].• Coadministration of voriconazole tablets with sirolimus is contraindicated because voriconazole tablets significantly increase sirolimus concentrations [see Drug Interactions (7) and Clinical Pharmacology (12.3)].• Coadministration of voriconazole tablets with rifampin, carbamazepine, long-acting barbiturates, and St John’s Wort is contraindicated because these drugs are likely to decrease plasma voriconazole concentrations significantly [see Drug Interactions (7) and Clinical Pharmacology (12.3)].• Coadministration of standard doses of voriconazole with efavirenz doses of 400 mg every 24 hours or higher is contraindicated, because efavirenz significantly decreases plasma voriconazole concentrations in healthy subjects at these doses. Voriconazole also significantly increases efavirenz plasma concentrations [see Drug Interactions (7) and Clinical Pharmacology (12.3)].• Coadministration of voriconazole tablets with high-dose ritonavir (400 mg every 12 hours) is contraindicated because ritonavir (400 mg every 12 hours) significantly decreases plasma voriconazole concentrations. Coadministration of voriconazole and low-dose ritonavir (100 mg every 12 hours) should be avoided, unless an assessment of the benefit/risk to the patient justifies the use of voriconazole [see Drug Interactions (7) and Clinical Pharmacology (12.3)].• Coadministration of voriconazole tablets with rifabutin is contraindicated since voriconazole tablets significantly increase rifabutin plasma concentrations and rifabutin also significantly decreases voriconazole plasma concentrations [see Drug Interactions (7) and Clinical Pharmacology (12.3)].• Coadministration of voriconazole tablets with ergot alkaloids (ergotamine and dihydroergotamine) is contraindicated because voriconazole tablets may increase the plasma concentration of ergot alkaloids, which may lead to ergotism [see Drug Interactions (7)].• Coadministration of voriconazole tablets with naloxegol is contraindicated because voriconazole tablets may increase plasma concentrations of naloxegol which may precipitate opioid withdrawal symptoms [see Drug Interactions (7)].• Coadministration of voriconazole tablets with tolvaptan is contraindicated because voriconazole tablets may increase tolvaptan plasma concentrations and increase risk of adverse reactions [see Drug Interactions (7)].• Coadministration of voriconazole tablets with venetoclax at initiation and during the ramp-up phase is contraindicated in patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) due to the potential for increased risk of tumor lysis syndrome [see Drug Interactions (7)].• Coadministration of voriconazole tablets with lurasidone is contraindicated since it may result in significant increases in lurasidone exposure and the potential for serious adverse reactions [see Drug Interactions (7)].
• Hypersensitivity to voriconazole or its excipients (4 )• Coadministration with pimozide, quinidine, sirolimus or ivabradine due to risk of serious adverse reactions (4 ,7 )• Coadministration with rifampin, carbamazepine, long-acting barbiturates, efavirenz, ritonavir, rifabutin, ergot alkaloids, and St. John’s Wort due to risk of loss of efficacy (4 ,7 )• Coadministration with naloxegol, tolvaptan, and lurasidone due to risk of adverse reactions (4 ,7 )• Coadministration of voriconazole with venetoclax at initiation and during the ramp-up phase in patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) due to increased risk of adverse reactions (4 ,7 )
5 Warnings And Precautions
• Hepatic Toxicity: Serious hepatic reactions reported. Evaluate liver function tests at start of and during voriconazole therapy (5.1 )• Arrhythmias and QT Prolongation: Correct potassium, magnesium and calcium prior to use; caution patients with proarrhythmic conditions (5.2 )• Visual Disturbances (including optic neuritis and papilledema): Monitor visual function if treatment continues beyond 28 days (5.4 )• Severe Cutaneous Adverse Reactions: Discontinue for exfoliative cutaneous reactions (5.5 )• Photosensitivity: Avoid sunlight due to risk of photosensitivity (5.6 )• Adrenal Dysfunction: Carefully monitor patients receiving voriconazole and corticosteroids (via all routes of administration) for adrenal dysfunction both during and after voriconazole treatment. Instruct patients to seek immediate medical care if they develop signs and symptoms of Cushing’s syndrome or adrenal insufficiency (5.8 )• Embryo-Fetal Toxicity: Voriconazole can cause fetal harm when administered to a pregnant woman. Inform pregnant patients of the potential hazard to the fetus. Advise females of reproductive potential to use effective contraception during treatment with voriconazole (5.9 ,8.1 ,8.3 )• Skeletal Adverse Reactions: Fluorosis and periostitis with long-term voriconazole therapy. Discontinue if these adverse reactions occur (5.12 )• Clinically Significant Drug Interactions: Review patient’s concomitant medications (5.13 ,7 )• Patients with Hereditary Galactose Intolerance, Lapp Lactase Deficiency or Glucose-Galactose Malabsorption: Voriconazole tablets should not be given to these patients because they contain lactose (5.14 )5.1Hepatic Toxicity
In clinical trials, there have been uncommon cases of serious hepatic reactions during treatment with voriconazole (including clinical hepatitis, cholestasis and fulminant hepatic failure, including fatalities). Instances of hepatic reactions were noted to occur primarily in patients with serious underlying medical conditions (predominantly hematological malignancy). Hepatic reactions, including hepatitis and jaundice, have occurred among patients with no other identifiable risk factors. Liver dysfunction has usually been reversible on discontinuation of therapy [see Adverse Reactions (6.1)].
A higher frequency of liver enzyme elevations was observed in the pediatric population [see Adverse Reactions (6.1)]. Hepatic function should be monitored in both adult and pediatric patients.
Measure serum transaminase levels and bilirubin at the initiation of voriconazole therapy and monitor at least weekly for the first month of treatment. Monitoring frequency can be reduced to monthly during continued use if no clinically significant changes are noted. If liver function tests become markedly elevated compared to baseline, voriconazole should be discontinued unless the medical judgment of the benefit/risk of the treatment for the patient justifies continued use [see Dosage and Administration (2.5) and Adverse Reactions (6.1)].
5.2 Arrhythmias and QT Prolongation
Some azoles, including voriconazole, have been associated with prolongation of the QT interval on the electrocardiogram. During clinical development and postmarketing surveillance, there have been rare cases of arrhythmias, (including ventricular arrhythmias such as torsade de pointes), cardiac arrests and sudden deaths in patients taking voriconazole. These cases usually involved seriously ill patients with multiple confounding risk factors, such as history of cardiotoxic chemotherapy, cardiomyopathy, hypokalemia and concomitant medications that may have been contributory.
Voriconazole should be administered with caution to patients with potentially proarrhythmic conditions, such as:
• Congenital or acquired QT prolongation• Cardiomyopathy, in particular when heart failure is present• Sinus bradycardia• Existing symptomatic arrhythmias• Concomitant medicinal product that is known to prolong QT interval [see Contraindications (4), Drug Interactions (7), and Clinical Pharmacology (12.3)]
Rigorous attempts to correct potassium, magnesium and calcium should be made before starting and during voriconazole therapy [see Clinical Pharmacology (12.3)].
5.4 Visual Disturbances
The effect of voriconazole on visual function is not known if treatment continues beyond 28 days. There have been postmarketing reports of prolonged visual adverse reactions, including optic neuritis and papilledema. If treatment continues beyond 28 days, visual function including visual acuity, visual field, and color perception should be monitored [see Adverse Reactions (6.2)].
5.5 Severe Cutaneous Adverse Reactions
Severe cutaneous adverse reactions (SCARs), such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS), which can be life-threatening or fatal, have been reported during treatment with voriconazole. If a patient develops a severe cutaneous adverse reaction, voriconazole should be discontinued [see Adverse Reactions (6.1, 6.2)].
5.6 Photosensitivity
Voriconazole has been associated with photosensitivity skin reaction. Patients, including pediatric patients, should avoid exposure to direct sunlight during voriconazole treatment and should use measures such as protective clothing and sunscreen with high sun protection factor (SPF). If phototoxic reactions occur, the patient should be referred to a dermatologist and voriconazole discontinuation should be considered. If voriconazole is continued despite the occurrence of phototoxicity-related lesions, dermatologic evaluation should be performed on a systematic and regular basis to allow early detection and management of premalignant lesions. Squamous cell carcinoma of the skin (including cutaneous SCC in situ, or Bowen’s disease) and melanoma have been reported during long-term voriconazole therapy in patients with photosensitivity skin reactions. If a patient develops a skin lesion consistent with premalignant skin lesions, squamous cell carcinoma or melanoma, voriconazole should be discontinued. In addition, voriconazole has been associated with photosensitivity related skin reactions such as pseudoporphyria, cheilitis, and cutaneous lupus erythematosus, as well as increased risk of skin toxicity with concomitant use of methotrexate, a drug associated with ultraviolet (UV) reactivation. There is the potential for this risk to be observed with other drugs associated with UV reactivation. Patients should avoid strong, direct sunlight during voriconazole therapy.
The frequency of phototoxicity reactions is higher in the pediatric population. Because squamous cell carcinoma has been reported in patients who experience photosensitivity reactions, stringent measures for photoprotection are warranted in children. In children experiencing photoaging injuries such as lentigines or ephelides, sun avoidance and dermatologic follow-up are recommended even after treatment discontinuation.
5.7 Renal Toxicity
Acute renal failure has been observed in patients undergoing treatment with voriconazole. Patients being treated with voriconazole are likely to be treated concomitantly with nephrotoxic medications and may have concurrent conditions that may result in decreased renal function.
Patients should be monitored for the development of abnormal renal function. This should include laboratory evaluation of serum creatinine [see Clinical Pharmacology (12.3) and Dosage and Administration (2.6)].
5.8Adrenal Dysfunction
Reversible cases of azole-induced adrenal insufficiency have been reported in patients receiving azoles, including voriconazole. Adrenal insufficiency has been reported in patients receiving azoles with or without concomitant corticosteroids. In patients receiving azoles without corticosteroids adrenal insufficiency is related to direct inhibition of steroidogenesis by azoles. In patients taking corticosteroids, voriconazole associated CYP3A4 inhibition of their metabolism may lead to corticosteroid excess and adrenal suppression [see Drug Interactions (7) and Clinical Pharmacology (12.3)]. Cushing’s syndrome with and without subsequent adrenal insufficiency has also been reported in patients receiving voriconazole concomitantly with corticosteroids.
Patients receiving voriconazole and corticosteroids (via all routes of administration) should be carefully monitored for adrenal dysfunction both during and after voriconazole treatment. Patients should be instructed to seek immediate medical care if they develop signs and symptoms of Cushing’s syndrome or adrenal insufficiency.
5.9 Embryo-Fetal Toxicity
Voriconazole can cause fetal harm when administered to a pregnant woman.
In animals, voriconazole administration was associated with fetal malformations, embryotoxicity, increased gestational length, dystocia and embryomortality [see Use in Specific Populations (8.1)].
If voriconazole is used during pregnancy, or if the patient becomes pregnant while taking voriconazole, inform the patient of the potential hazard to the fetus. Advise females of reproductive potential to use effective contraception during treatment with voriconazole [see Use in Specific Populations (8.3)].
5.10 Laboratory Tests
Electrolyte disturbances such as hypokalemia, hypomagnesemia and hypocalcemia should be corrected prior to initiation of and during voriconazole therapy.
Patient management should include laboratory evaluation of renal (particularly serum creatinine) and hepatic function (particularly liver function tests and bilirubin).
5.11 Pancreatitis
Pancreatitis has been observed in patients undergoing treatment with voriconazole [see Adverse Reactions (6.1, 6.2)]. Patients with risk factors for acute pancreatitis (e.g., recent chemotherapy, hematopoietic stem cell transplantation [HSCT]) should be monitored for the development of pancreatitis during voriconazole treatment.
5.12 Skeletal Adverse Reactions
Fluorosis and periostitis have been reported during long-term voriconazole therapy. If a patient develops skeletal pain and radiologic findings compatible with fluorosis or periostitis, voriconazole should be discontinued [see Adverse Reactions (6.2)].
5.13 Clinically Significant Drug Interactions
See Table 10 for a uling of drugs that may significantly alter voriconazole concentrations. Also, see Table 11 for a uling of drugs that may interact with voriconazole resulting in altered pharmacokinetics or pharmacodynamics of the other drug [see Contraindications (4) and Drug Interactions (7)].
5.14 Galactose Intolerance
Voriconazole tablets contain lactose and should not be given to patients with rare hereditary problems of galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption.
6 Adverse Reactions
The following serious adverse reactions are described elsewhere in the labeling:
Hepatic Toxicity [see Warnings and Precautions (5.1)]
Arrhythmias and QT Prolongation [see Warnings and Precautions (5.2)]
Visual Disturbances [see Warnings and Precautions (5.4)]
Severe Cutaneous Adverse Reactions [see Warnings and Precautions (5.5)]
Photosensitivity [see Warnings and Precautions (5.6)]
Renal Toxicity [see Warnings and Precautions (5.7)]
• Adult Patients: The most common adverse reactions (incidence ≥ 2%) were visual disturbances, fever, nausea, rash, vomiting, chills, headache, liver function test abnormal, tachycardia, hallucinations (6 )• Pediatric Patients: The most common adverse reactions (incidence ≥ 5%) were visual disturbances, pyrexia, vomiting, epistaxis, nausea, rash, abdominal pain, diarrhea, hypertension, hypokalemia, cough, headache, thrombocytopenia, ALT abnormal, hypotension, peripheral edema, hyperglycemia, tachycardia, dyspnea, hypocalcemia, hypophosphatemia, LFT abnormal, mucosal inflammation, photophobia, abdominal distension, constipation, dizziness, hallucinations, hemoptysis, hypoalbuminemia, hypomagnesemia, renal impairment, upper respiratory tract infection (6 )
Â
To report SUSPECTED ADVERSE REACTIONS, contact Mylan at 1-877-446-3679 (1-877-4-INFO-RX) or FDA at 1-800-FDA-1088 orwww.fda.gov/medwatch.
6.1 Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Overview
The most frequently reported adverse reactions (see Table 4) in the adult therapeutic trials were visual disturbances (18.7%), fever (5.7%), nausea (5.4%), rash (5.3%), vomiting (4.4%), chills (3.7%), headache (3.0%), liver function test increased (2.7%), tachycardia (2.4%), hallucinations (2.4%). The adverse reactions which most often led to discontinuation of voriconazole therapy were elevated liver function tests, rash, and visual disturbances [see Warnings and Precautions (5.1, 5.4) and Adverse Reactions (6.1)].
The data described in Table 4 reflect exposure to voriconazole in 1655 patients in nine therapeutic studies. This represents a heterogeneous population, including immunocompromised patients, e.g., patients with hematological malignancy or HIV and non-neutropenic patients. This subgroup does not include healthy subjects and patients treated in the compassionate use and non-therapeutic studies. This patient population was 62% male, had a mean age of 46 years (range 11-90, including 51 patients aged 12-18 years), and was 78% White and 10% Black. Five hundred sixty one patients had a duration of voriconazole therapy of greater than 12 weeks, with 136 patients receiving voriconazole for over six months. Table 4 includes all adverse reactions which were reported at an incidence of ≥ 2% during voriconazole therapy in the all therapeutic studies population, studies 307/602 and 608 combined, or study 305, as well as events of concern which occurred at an incidence of < 2%.
In study 307/602, 381 patients (196 on voriconazole, 185 on amphotericin B) were treated to compare voriconazole to amphotericin B followed by other licensed antifungal therapy (OLAT) in the primary treatment of patients with acute IA. The rate of discontinuation from voriconazole study medication due to adverse reactions was 21.4% (42/196 patients). In study 608, 403 patients with candidemia were treated to compare voriconazole (272 patients) to the regimen of amphotericin B followed by fluconazole (131 patients). The rate of discontinuation from voriconazole study medication due to adverse reactions was 19.5% out of 272 patients. Study 305 evaluated the effects of oral voriconazole (200 patients) and oral fluconazole (191 patients) in the treatment of EC. The rate of discontinuation from voriconazole study medication in Study 305 due to adverse reactions was 7% (14/200 patients). Laboratory test abnormalities for these studies are discussed under Clinical Laboratory Values below.
Table 4: Adverse Reactions Rate ≥ 2% on Voriconazole or Adverse Reactions of Concern in Therapeutic Studies Population, Studies 307/602-608 Combined, or Study 305. Possibly Related to Therapy or Causality Unknown Study 307/602: IA; Study 608: candidemia; Study 305: EC
Therapeutic StudiesStudies 303, 304, 305, 307, 309, 602, 603, 604, 608
Studies 307/602 and 608
(IV/oral therapy)
Study 305
(oral therapy)
Voriconazole
N = 1655
Voriconazole
N = 468
Ampho BAmphotericin B followed by other licensed antifungal therapy
N = 185
Ampho B→
Fluconazole
N = 131
Voriconazole
N = 200
Fluconazole
N = 191
N (%)
N (%)
N (%)
N (%)
N (%)
N (%)
Special SensesSee Warnings and Precautions (5.4)
Abnormal vision
310 (18.7)
63 (13.5)
1 (0.5)
0
31 (15.5)
8 (4.2)
Photophobia
37 (2.2)
8 (1.7)
0
0
5 (2.5)
2 (1.0)
Chromatopsia
20 (1.2)
2 (0.4)
0
0
2 (1.0)
0
Â
Body as a Whole
Fever
94 (5.7)
8 (1.7)
25 (13.5)
5 (3.8)
0
0
Chills
61 (3.7)
1 (0.2)
36 (19.5)
8 (6.1)
1 (0.5)
0
Headache
49 (3.0)
9 (1.9)
8 (4.3)
1 (0.8)
0
1 (0.5)
Â
Cardiovascular System
Tachycardia
39 (2.4)
6 (1.3)
5 (2.7)
0
0
0
Â
Digestive System
Nausea
89 (5.4)
18 (3.8)
29 (15.7)
2 (1.5)
2 (1.0)
3 (1.6)
Vomiting
72 (4.4)
15 (3.2)
18 (9.7)
1 (0.8)
2 (1.0)
1 (0.5)
Liver function tests abnormal
45 (2.7)
15 (3.2)
4 (2.2)
1 (0.8)
6 (3.0)
2 (1.0)
Cholestatic jaundice
17 (1.0)
8 (1.7)
0
1 (0.8)
3 (1.5)
0
Â
Metabolic and Nutritional Systems
Alkaline phosphatase increased
59 (3.6)
19 (4.1)
4 (2.2)
3 (2.3)
10 (5.0)
3 (1.6)
Hepatic enzymes increased
30 (1.8)
11 (2.4)
5 (2.7)
1 (0.8)
3 (1.5)
0
SGOT increased
31 (1.9)
9 (1.9)
0
1 (0.8)
8 (4.0)
2 (1.0)
SGPT increased
29 (1.8)
9 (1.9)
1 (0.5)
2 (1.5)
6 (3.0)
2 (1.0)
Hypokalemia
26 (1.6)
3 (0.6)
36 (19.5)
16 (12.2)
0
0
Bilirubinemia
15 (0.9)
5 (1.1)
3 (1.6)
2 (1.5)
1 (0.5)
0
Creatinine increased
4 (0.2)
0
59 (31.9)
10 (7.6)
1 (0.5)
0
Â
Nervous System
Hallucinations
39 (2.4)
13 (2.8)
1 (0.5)
0
0
0
Â
Skin and Appendages
Rash
88 (5.3)
20 (4.3)
7 (3.8)
1 (0.8)
3 (1.5)
1 (0.5)
Â
Urogenital
Kidney function abnormal
10 (0.6)
6 (1.3)
40 (21.6)
9 (6.9)
1 (0.5)
1 (0.5)
Acute kidney failure
7 (0.4)
2 (0.4)
11 (5.9)
7 (5.3)
0
0
The overall incidence of transaminase increases ˃ 3x upper limit of normal (not necessarily comprising an adverse reaction) was 17.7% (268/1514) in adult subjects treated with voriconazole for therapeutic use in pooled clinical trials. Increased incidence of liver function test abnormalities may be associated with higher plasma concentrations and/or doses. The majority of abnormal liver function tests either resolved during treatment without dose adjustment or resolved following dose adjustment, including discontinuation of therapy.
Voriconazole has been infrequently associated with cases of serious hepatic toxicity including cases of jaundice and rare cases of hepatitis and hepatic failure leading to death. Most of these patients had other serious underlying conditions.
Liver function tests should be evaluated at the start of and during the course of voriconazole therapy. Patients who develop abnormal liver function tests during voriconazole therapy should be monitored for the development of more severe hepatic injury. Patient management should include laboratory evaluation of hepatic function (particularly liver function tests and bilirubin). Discontinuation of voriconazole must be considered if clinical signs and symptoms consistent with liver disease develop that may be attributable to voriconazole [see Warnings and Precautions (5.1)].
Acute renal failure has been observed in severely ill patients undergoing treatment with voriconazole. Patients being treated with voriconazole are likely to be treated concomitantly with nephrotoxic medications and may have concurrent conditions that can result in decreased renal function. It is recommended that patients are monitored for the development of abnormal renal function. This should include laboratory evaluation of serum creatinine.
Tables 5 to 7 show the number of patients with hypokalemia and clinically significant changes in renal and liver function tests in three randomized, comparative multicenter studies. In study 305, patients with EC were randomized to either oral voriconazole or oral fluconazole. In study 307/602, patients with definite or probable IA were randomized to either voriconazole or amphotericin B therapy. In study 608, patients with candidemia were randomized to either voriconazole or the regimen of amphotericin B followed by fluconazole.
Table 5: Protocol 305 - Patients with Esophageal Candidiasis Clinically Significant Laboratory Test Abnormalities n = number of patients with a clinically significant abnormality while on study therapy N = total number of patients with at least one observation of the given lab test while on study therapy ULN = upper limit of normalAST = Aspartate aminotransferase; ALT = alanine aminotransferase
CriteriaWithout regard to baseline value
Voriconazole
Fluconazole
n/N (%)
n/N (%)
Â
T. Bilirubin
> 1.5 x ULN
8/185 (4.3)
7/186 (3.8)
AST
> 3.0 x ULN
38/187 (20.3)
15/186 (8.1)
ALT
> 3.0 x ULN
20/187 (10.7)
12/186 (6.5)
Alkaline Phosphatase
> 3.0 x ULN
19/187 (10.2)
14/186 (7.5)
Table 6: Protocol 307/602 - Primary Treatment of Invasive Aspergillosis Clinically Significant Laboratory Test Abnormalities n = number of patients with a clinically significant abnormality while on study therapy N = total number of patients with at least one observation of the given lab test while on study therapyULN = upper limit of normal LLN = lower limit of normal AST = Aspartate aminotransferase; ALT = alanine aminotransferase
CriteriaWithout regard to baseline value
Voriconazole
Amphotericin BAmphotericin B followed by other licensed antifungal therapy
n/N (%)
n/N (%)
Â
T. Bilirubin
> 1.5 x ULN
35/180 (19.4)
46/173 (26.6)
AST
> 3.0 x ULN
21/180 (11.7)
18/174 (10.3)
ALT
> 3.0 x ULN
34/180 (18.9)
40/173 (23.1)
Alkaline Phosphatase
> 3.0 x ULN
29/181 (16.0)
38/173 (22.0)
Creatinine
> 1.3 x ULN
39/182 (21.4)
102/177 (57.6)
Potassium
< 0.9 x LLN
30/181 (16.6)
70/178 (39.3)
Table 7: Protocol 608 - Treatment of Candidemia Clinically Significant Laboratory Test Abnormalities n = number of patients with a clinically significant abnormality while on study therapy N = total number of patients with at least one observation of the given lab test while on study therapyAST = Aspartate aminotransferase; ALT = alanine aminotransferaseULN = upper limit of normal LLN = lower limit of normal
CriteriaWithout regard to baseline value
Voriconazole
Amphotericin B
followed by
Fluconazole
n/N (%)
n/N (%)
Â
T. Bilirubin
> 1.5 x ULN
50/261 (19.2)
31/115 (27.0)
AST
> 3.0 x ULN
40/261 (15.3)
16/116 (13.8)
ALT
> 3.0 x ULN
22/261 (8.4)
15/116 (12.9)
Alkaline Phosphatase
> 3.0 x ULN
59/261 (22.6)
26/115 (22.6)
Creatinine
> 1.3 x ULN
39/260 (15.0)
32/118 (27.1)
Potassium
< 0.9 x LLN
43/258 (16.7)
35/118 (29.7)
The safety of voriconazole was investigated in 105 pediatric patients aged 2 to less than 18 years, including 52 pediatric patients less than 18 years of age who were enrolled in the adult therapeutic studies.
Serious Adverse Reactions and Adverse Reactions Leading to Discontinuation
In clinical studies, serious adverse reactions occurred in 46% (48/105) of voriconazole treated pediatric patients. Treatment discontinuations due to adverse reactions occurred in 12/105 (11%) of all patients. Hepatic adverse reactions (i.e., ALT increased; liver function test abnormal; jaundice) 6% (6/105) accounted for the majority of voriconazole treatment discontinuations.
Most Common Adverse Reactions
The most common adverse reactions occurring in ≥ 5% of pediatric patients receiving voriconazole in the pooled pediatric clinical trials are displayed by body system, in Table 8.
Table 8: Adverse Reactions Occurring in ≥ 5% of Pediatric Patients Receiving Voriconazole in the Pooled Pediatric Clinical Trials Abbreviations: ALT = alanine aminotransferase; LFT = liver function test
Body System
Adverse Reaction
Pooled Pediatric DataReflects all adverse reactions and not treatment-related only.
N = 105
n (%)
Blood and Lymphatic Systems Disorders
Thrombocytopenia
10 (10)
Cardiac Disorders
Tachycardia
7 (7)
Eye Disorders
Visual DisturbancesPooled reports include such terms as: amaurosis (partial or total blindness without visible change in the eye); asthenopia (eye strain); chromatopsia (abnormally colored vision); color blindness; diplopia; photopsia; retinal disorder; vision blurred, visual acuity decreased, visual brightness; visual impairment. Several patients had more than one visual disturbance.
27 (26)
Photophobia
6 (6)
Gastrointestinal Disorders
Vomiting
21 (20)
Nausea
14 (13)
Abdominal painPooled reports include such terms as: abdominal pain and abdominal pain, upper.
13 (12)
Diarrhea
12 (11)
Abdominal distension
5 (5)
Constipation
5 (5)
General Disorders and Administration Site Conditions
Pyrexia
25 (25)
Peripheral edema
9 (9)
Mucosal inflammation
6 (6)
Infections and Infestations
Upper respiratory tract infection
5 (5)
Investigations
ALT abnormalPooled reports include such terms as: ALT abnormal and ALT increased.
9 (9)
LFT abnormal
6 (6)
Metabolism and Nutrition Disorders
Hypokalemia
11 (11)
Hyperglycemia
7 (7)
Hypocalcemia
6 (6)
Hypophosphotemia
6 (6)
Hypoalbuminemia
5 (5)
Hypomagnesemia
5 (5)
Nervous System Disorders
Headache
10 (10)
Dizziness
5 (5)
Psychiatric Disorders
HallucinationsPooled reports include such terms as: hallucination; hallucination, auditory; hallucination, visual. Several patients had both visual and auditory hallucinations.
5 (5)
Renal and Urinary Disorders
Renal impairmentPooled reports include such terms as: renal failure and a single patient with renal impairment.
5 (5)
Respiratory Disorders
Epistaxis
17 (16)
Cough
10 (10)
Dyspnea
6 (6)
Hemoptysis
5 (5)
Skin and Subcutaneous Tissue Disorders
RashPooled reports include such terms as: rash; rash generalized; rash macular; rash maculopapular; rash pruritic.
14 (13)
Vascular Disorders
Hypertension
12 (11)
Hypotension
9 (9)
The following adverse reactions with incidence less than 5% were reported in 105 pediatric patients treated with voriconazole:
Blood and Lymphatic System Disorders:Â anemia, leukopenia, pancytopenia
Cardiac Disorders:Â bradycardia, palpitations, supraventricular tachycardia
Eye Disorders:Â dry eye, keratitis
Ear and Labyrinth Disorders:Â tinnitus, vertigo
Gastrointestinal Disorders:Â abdominal tenderness, dyspepsia
General Disorders and Administration Site Conditions:Â asthenia, catheter site pain, chills, hypothermia, lethargy
Hepatobiliary Disorders:Â cholestasis, hyperbilirubinemia, jaundice
Immune System Disorders:Â hypersensitivity, urticaria
Infections and Infestations:Â conjunctivitis
Laboratory Investigations:Â AST increased, blood creatinine increased, gamma-glutamyl transferase increased
Metabolism and Nutrition Disorders:Â hypercalcemia, hypermagnesemia, hyperphosphatemia, hypoglycemia
Musculoskeletal and Connective Tissue Disorders:Â arthralgia, myalgia
Nervous System Disorders:Â ataxia, convulsion, dizziness, nystagmus, paresthesia, syncope
Psychiatric Disorders:Â affect lability, agitation, anxiety, depression, insomnia
Respiratory Disorders:Â bronchospasm, nasal congestion, respiratory failure, tachypnea
Skin and Subcutaneous Tissue Disorders:Â alopecia, dermatitis (allergic, contact, and exfoliative), pruritus
Vascular Disorders:Â flushing, phlebitis
Hepatic-Related Adverse Reactions in Pediatric Patients
The frequency of hepatic-related adverse reactions in pediatric patients exposed to voriconazole in therapeutic studies was numerically higher than that of adults (28.6% compared to 24.1%, respectively). The higher frequency of hepatic adverse reactions in the pediatric population was mainly due to an increased frequency of liver enzyme elevations (21.9% in pediatric patients compared to 16.1% in adults), including transaminase elevations (ALT and AST combined) 7.6% in the pediatric patients compared to 5.1% in adults.
Clinical Laboratory Values in Pediatric Patients
The overall incidence of transaminase increases > 3x upper limit of normal was 27.2% (28/103) in pediatric and 17.7% (268/1514) in adult patients treated with voriconazole in pooled clinical trials. The majority of abnormal liver function tests either resolved on treatment with or without dose adjustment or after voriconazole discontinuation.
A higher frequency of clinically significant liver laboratory abnormalities, irrespective of baseline laboratory values (> 3x ULN ALT or AST), was consistently observed in the combined therapeutic pediatric population (15.5% AST and 22.5% ALT) when compared to adults (12.9% AST and 11.6% ALT). The incidence of bilirubin elevation was comparable between adult and pediatric patients. The incidence of hepatic abnormalities in pediatric patients is shown in Table 9.
Table 9: Incidence of Hepatic Abnormalities among Pediatric Subjects n = number of patients with a clinically significant abnormality while on study therapyN = total number of patients with at least one observation of the given lab test while on study therapyAST = Aspartate aminotransferase; ALT = alanine aminotransferaseULN = upper limit of normal
Criteria
n/N (%)
Total bilirubin
> 1.5 x ULN
19/102 (19)
AST
> 3.0 x ULN
16/103 (16)
ALT
> 3.0 x ULN
23/102 (23)
Alkaline Phosphatase
> 3.0 x ULN
8/97 (8)
Â
6.2 Postmarketing Experience in Adult and Pediatric Patients
The following adverse reactions have been identified during post-approval use of voriconazole. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Increased risk of skin toxicity with concomitant use of methotrexate, a drug associated with UV reactivation, was observed in postmarketing reports [see Warnings and Precautions (5.6) and Adverse Reactions (6.1)].
Skeletal: fluorosis and periostitis have been reported during long-term voriconazole therapy [see Warnings and Precautions (5.12) ].
Eye disorders: prolonged visual adverse reactions, including optic neuritis and papilledema [see Warnings and Precautions (5.4)].
Skin and Appendages: drug reaction with eosinophilia and systemic symptoms (DRESS) has been reported [see Warnings and Precautions (5.5) and Adverse Reactions (6.1)].
Endocrine disorders: adrenal insufficiency, Cushing’s syndrome (when voriconazole has been used concomitantly with corticosteroids) [see Warnings and Precautions (5.8)].
There have been postmarketing reports of pancreatitis in pediatric patients.
7 Drug Interactions
Voriconazole is metabolized by cytochrome P450 isoenzymes, CYP2C19, CYP2C9, and CYP3A4. Therefore, inhibitors or inducers of these isoenzymes may increase or decrease voriconazole plasma concentrations, respectively. Voriconazole is a strong inhibitor of CYP3A4, and also inhibits CYP2C19 and CYP2C9. Therefore, voriconazole may increase the plasma concentrations of substances metabolized by these CYP450 isoenzymes.
Tables 10 and 11 provide the clinically significant interactions between voriconazole and other medical products.
Table 10: Effect of Other Drugs on Voriconazole Pharmacokinetics [see Clinical Pharmacology (12.3)]
Drug/Drug Class
(Mechanism of Interaction by the Drug)
Voriconazole Plasma Exposure
(Cmax and AUC Ï„ after 200 mg every 12 hours)
Recommendations for Voriconazole
Dosage Adjustment/Comments
RifampinResults based on in vivo clinical studies generally following repeat oral dosing with 200 mg every 12 hours voriconazole to healthy subjects and Rifabutin
(CYP450 Induction)
Significantly Reduced
Contraindicated
Efavirenz (400 mg every 24 hours)Results based on in vivo clinical study following repeat oral dosing with 400 mg every 12 hours for 1 day, then 200 mg every 12 hours for at least 2 days voriconazole to healthy subjects
(CYP450 Induction) Â Efavirenz (300 mg every 24 hours)(CYP450 Induction)
Significantly Reduced  Slight Decrease in AUCτ
Contraindicated  When voriconazole is coadministered with efavirenz, voriconazole oral maintenance dose should be increased to 400 mg every 12 hours and efavirenz should be decreased to 300 mg every 24 hours.
High-dose Ritonavir (400 mg every 12 hours)
(CYP450 Induction)
Â
Significantly Reduced
Contraindicated
Low-dose Ritonavir (100 mg every 12 hours)
(CYP450 Induction)
Reduced
Coadministration of voriconazole and low-dose ritonavir (100 mg every 12 hours) should be avoided, unless an assessment of the benefit/risk to the patient justifies the use of voriconazole.
Carbamazepine
(CYP450 Induction)
Not Studied In Vivo or In Vitro, but Likely to Result in Significant Reduction
Contraindicated
Long Acting Barbiturates (e.g., phenobarbital, mephobarbital)
(CYP450 Induction)
Not Studied In Vivo or In Vitro, but Likely to Result in Significant Reduction
Contraindicated
Phenytoin
(CYP450 Induction)
Significantly Reduced
Increase voriconazole maintenance dose from 4 mg/kg to 5 mg/kg IV every 12 hours or from 200 mg to 400 mg orally every 12 hours (100 mg to 200 mg orally every 12 hours in patients weighing less than 40 kg).
Letermovir
(CYP2C9/2C19 Induction)
Reduced
If concomitant administration of voriconazole with letermovir cannot be avoided, monitor for reduced effectiveness of voriconazole.
St. John’s Wort
(CYP450 inducer; P-gp inducer)
Significantly Reduced
Contraindicated
Oral Contraceptives
containing ethinyl estradiol and norethindrone (CYP2C19 Inhibition)
Increased
Monitoring for adverse reactions and toxicity related to voriconazole is recommended when coadministered with oral contraceptives.
Fluconazole(CYP2C9, CYP2C19 and CYP3A4 Inhibition)
Significantly Increased
Avoid concomitant administration of voriconazole and fluconazole. Monitoring for adverse reactions and toxicity related to voriconazole is started within 24 hours after the last dose of fluconazole.
Other HIV Protease Inhibitors
(CYP3A4 Inhibition)
In Vivo Studies Showed No Significant Effects of Indinavir on Voriconazole Exposure
No dosage adjustment in the voriconazole dosage needed when coadministered with indinavir.
In Vitro Studies Demonstrated Potential for Inhibition of Voriconazole Metabolism
(Increased Plasma Exposure)
Frequent monitoring for adverse reactions and toxicity related to voriconazole when coadministered with other HIV protease inhibitors.
Other NNRTIsNon-Nucleoside Reverse Transcriptase Inhibitors
(CYP3A4 Inhibition or CYP450
Induction)
In Vitro Studies Demonstrated Potential for Inhibition of Voriconazole Metabolism by Delavirdine and Other NNRTIs (Increased Plasma Exposure)
Frequent monitoring for adverse reactions and toxicity related to voriconazole.
A Voriconazole-Efavirenz Drug Interaction Study Demonstrated the Potential for the Metabolism of Voriconazole to be Induced by Efavirenz and Other NNRTIs (Decreased Plasma Exposure)
Careful assessment of voriconazole effectiveness.
Â
Table 11: Effect of Voriconazole on Pharmacokinetics of Other Drugs [see Clinical Pharmacology (12.3)]
Drug/Drug Class (Mechanism of Interaction by Voriconazole)
Drug Plasma Exposure (Cmax and AUC Ï„Â )
Recommendations for Drug Dosage Adjustment/Comments
SirolimusResults based on in vivo clinical studies generally following repeat oral dosing with 200 mg BID voriconazole to healthy subjects (CYP3A4 Inhibition)
Significantly Increased
Contraindicated
Rifabutin(CYP3A4 Inhibition)
Significantly Increased
Contraindicated
Efavirenz (400 mg every 24 hours)Results based on in vivo clinical study following repeat oral dosing with 400 mg every 12 hours for 1 day, then 200 mg every 12 hours for at least 2 days voriconazole to healthy subjects (CYP3A4 Inhibition) Â Efavirenz (300 mg every 24 hours)(CYP3A4 Inhibition)
Significantly Increased  Slight Increase in AUCτ
Contraindicated  When voriconazole is coadministered with efavirenz, voriconazole oral maintenance dose should be increased to 400 mg every 12 hours and efavirenz should be decreased to 300 mg every 24 hours.
High-dose Ritonavir (400 mg
every 12 hours)(CYP3A4 Inhibition)
No Significant Effect of Voriconazole on
Ritonavir Cmax or AUCÏ„
Contraindicated because of significant reduction of voriconazole Cmax and AUCÏ„.
Low-dose Ritonavir (100 mg every 12 hours)Â
Slight Decrease in Ritonavir Cmax and
AUCÏ„
Coadministration of voriconazole and low-dose ritonavir (100 mg every 12 hours) should be avoided (due to the reduction in voriconazole Cmax and AUCÏ„) unless an assessment of the benefit/risk to the patient justifies the use of voriconazole.
Pimozide, Quinidine, Ivabradine
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Contraindicated because of potential for QT prolongation and rare occurrence of torsade de pointes.
Ergot Alkaloids(CYP450 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Contraindicated
Naloxegol
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased which may Increase the Risk of Adverse Reactions
Contraindicated
Tolvaptan
(CYP3A4 Inhibition)
Although Not Studied Clinically, Voriconazole is Likely to Significantly Increase the Plasma Concentrations of Tolvaptan
Contraindicated
Venetoclax
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Venetoclax Plasma Exposure Likely to be Significantly Increased
Coadministration of voriconazole is contraindicated at initiation and during the ramp-up phase in patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). Refer to the venetoclax labeling for safety monitoring and dose reduction in the steady daily dosing phase in CLL/SLL patients.
Â
For patients with acute myeloid leukemia (AML), dose reduction and safety monitoring are recommended across all dosing phases when coadministering voriconazole with venetoclax. Refer to the venetoclax prescribing information for dosing instructions.
Lemborexant
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Avoid concomitant use of voriconazole with lemborexant.
Glasdegib
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Consider alternative therapies. If concomitant use cannot be avoided, monitor patients for increased risk of adverse reactions including QTc interval prolongation.
Tyrosine kinase inhibitors (including but not limited to axitinib, bosutinib, cabozantinib, ceritinib, cobimetinib, dabrafenib, dasatinib, nilotinib, sunitinib, ibrutinib, ribociclib)
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Avoid concomitant use of voriconazole. If concomitant use cannot be avoided, dose reduction of the tyrosine kinase inhibitor is recommended. Refer to the prescribing information for the relevant product.
Lurasidone
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Voriconazole is Likely to Significantly Increase the Plasma Concentrations of Lurasidone
Contraindicated
Cyclosporine
(CYP3A4 Inhibition)
AUCÏ„ Significantly Increased; No Significant Effect on Cmax
When initiating therapy with voriconazole in patients already receiving cyclosporine, reduce the cyclosporine dose to one-half of the starting dose and follow with frequent monitoring of cyclosporine blood levels. Increased cyclosporine levels have been associated with nephrotoxicity. When voriconazole is discontinued, cyclosporine concentrations must be frequently monitored and the dose increased as necessary.
MethadoneResults based on in vivo clinical study following repeat oral dosing with 400 mg every 12 hours for 1 day, then 200 mg every 12 hours for 4 days voriconazole to subjects receiving a methadone maintenance dose (30-100 mg every 24 hours) (CYP3A4 Inhibition)
Increased
Increased plasma concentrations of methadone have been associated with toxicity including QT prolongation. Frequent monitoring for adverse reactions and toxicity related to methadone is recommended during coadministration. Dose reduction of methadone may be needed.
Fentanyl (CYP3A4 Inhibition)
Increased
Reduction in the dose of fentanyl and other long-acting opiates metabolized by CYP3A4 should be considered when coadministered with voriconazole. Extended and frequent monitoring for opiate-associated adverse reactions may be necessary.
Alfentanil (CYP3A4 Inhibition)
Significantly Increased
An increase in the incidence of delayed and persistent alfentanil-associated nausea and vomiting were observed when coadministered with voriconazole. Reduction in the dose of alfentanil and other opiates metabolized by CYP3A4 (e.g., sufentanil) should be considered when coadministered with voriconazole. A longer period for monitoring respiratory and other opiate-associated adverse reactions may be necessary.
Oxycodone (CYP3A4 Inhibition)
Significantly Increased
Increased visual effects (heterophoria and miosis) of oxycodone were observed when coadministered with voriconazole.
Reduction in the dose of oxycodone and other long-acting opiates metabolized by CYP3A4 should be considered when coadministered with voriconazole. Extended and frequent monitoring for opiate-associated adverse reactions may be necessary.
NSAIDsNon-Steroidal Anti-Inflammatory Drug including: ibuprofen and diclofenac
(CYP2C9 Inhibition)
Increased
Frequent monitoring for adverse reactions and toxicity related to NSAIDs. Dose reduction of NSAIDs may be needed.
Tacrolimus
(CYP3A4 Inhibition)
Significantly Increased
When initiating therapy with voriconazole in patients already receiving tacrolimus, reduce the tacrolimus dose to one-third of the starting dose and follow with frequent monitoring of tacrolimus blood levels. Increased tacrolimus levels have been associated with nephrotoxicity. When voriconazole is discontinued, tacrolimus concentrations must be frequently monitored and the dose increased as necessary.
Phenytoin
(CYP2C9 Inhibition)
Significantly Increased
Frequent monitoring of phenytoin plasma concentrations and frequent monitoring of adverse effects related to phenytoin.
Oral Contraceptives containing ethinyl
estradiol and norethindrone (CYP3A4
Inhibition)
Increased
Monitoring for adverse reactions related to oral contraceptives is recommended during coadministration.
Prednisolone and other corticosteroids
(CYP3A4 Inhibition)
In Vivo Studies Showed No Significant Effects of Voriconazole on Prednisolone Exposure
Â
No dosage adjustment for prednisolone when coadministered with voriconazole [see Clinical Pharmacology (12.3)].
Â
Not Studied In vitro or In vivo for Other Corticosteroids, but Drug Exposure Likely to be Increased
Monitor for potential adrenal dysfunction when voriconazole is administered with other corticosteroids [See Warnings and Precautions (5.8)].
Warfarin
(CYP2C9 Inhibition)
Â
Other Oral Coumarin Anticoagulants
(CYP2C9/3A4 Inhibition)
Prothrombin Time Significantly Increased
Â
Not Studied In Vivo or In Vitro for other Oral Coumarin Anticoagulants, but Drug Plasma Exposure Likely to be Increased
If patients receiving coumarin preparations are treated simultaneously with voriconazole, the prothrombin time or other suitable anticoagulation tests should be monitored at close intervals and the dosage of anticoagulants adjusted accordingly.
Ivacaftor
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased which may Increase the Risk of Adverse Reactions
Dose reduction of ivacaftor is recommended. Refer to the prescribing information for ivacaftor.
Eszopiclone
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased which may Increase the Sedative Effect of Eszopiclone
Dose reduction of eszopiclone is recommended. Refer to the prescribing information for eszopiclone.
Omeprazole
(CYP2C19/3A4 Inhibition)
Significantly Increased
When initiating therapy with voriconazole in patients already receiving omeprazole doses of 40 mg or greater, reduce the omeprazole dose by one-half. The metabolism of other proton pump inhibitors that are CYP2C19 substrates may also be inhibited by voriconazole and may result in increased plasma concentrations of other proton pump inhibitors.
Other HIV Protease Inhibitors
(CYP3A4 Inhibition)
In Vivo Studies Showed No Significant
Effects on Indinavir Exposure
No dosage adjustment for indinavir when coadministered with voriconazole.
In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism (Increased Plasma Exposure)
Frequent monitoring for adverse reactions and toxicity related to other HIV protease inhibitors.
Other NNRTIsNon-Nucleoside Reverse Transcriptase Inhibitors
(CYP3A4 Inhibition)
A Voriconazole-Efavirenz Drug Interaction Study Demonstrated the Potential for Voriconazole to Inhibit Metabolism of Other NNRTIs
(Increased Plasma Exposure)
Frequent monitoring for adverse reactions and toxicity related to NNRTI.
Tretinoin
(CYP3A4 Inhibition)
Although Not Studied, Voriconazole may Increase Tretinoin Concentrations and Increase the Risk of Adverse Reactions
Frequent monitoring for signs and symptoms of pseudotumor cerebri or hypercalcemia.
Midazolam
(CYP3A4 Inhibition)Â
Significantly Increased
Increased plasma exposures may increase the risk of adverse reactions and toxicities related to benzodiazepines. Â Refer to drug-specific labeling for details.
Other benzodiazepines including triazolam and alprazolam
(CYP3A4 Inhibition)
In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism (Increased Plasma Exposure)
HMG-CoA Reductase Inhibitors (Statins)
(CYP3A4 Inhibition)
In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism(Increased Plasma Exposure)
Frequent monitoring for adverse reactions and toxicity related to statins. Increased statin concentrations in plasma have been associated with rhabdomyolysis. Adjustment of the statin dosage may be needed.
Dihydropyridine Calcium Channel Blockers
(CYP3A4 Inhibition)
In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism (Increased Plasma Exposure)
Frequent monitoring for adverse reactions and toxicity related to calcium channel blockers. Adjustment of calcium channel blocker dosage may be needed.
Sulfonylurea Oral Hypoglycemics
(CYP2C9 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Frequent monitoring of blood glucose and for signs and symptoms of hypoglycemia. Adjustment of oral hypoglycemic drug dosage may be needed.
Vinca Alkaloids
(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Frequent monitoring for adverse reactions and toxicity (i.e., neurotoxicity) related to vinca alkaloids. Reserve azole antifungals, including voriconazole, for patients receiving a vinca alkaloid who have no alternative antifungal treatment options.
Everolimus(CYP3A4 Inhibition)
Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
Concomitant administration of voriconazole and everolimus is not recommended.
Â
• CYP3A4, CYP2C9, and CYP2C19 inhibitors and inducers: Adjust voriconazole dosage and monitor for adverse reactions or lack of efficacy (4 ,7 )• Voriconazole may increase the concentrations and activity of drugs that are CYP3A4, CYP2C9 and CYP2C19 substrates. Reduce dosage of these other drugs and monitor for adverse reactions (4 ,7 )• Phenytoin or Efavirenz: With co-administration, increase maintenance oral and intravenous dosage of voriconazole (2.3 ,2.7 ,7 )
8 Use In Specific Populations
• Pediatrics: Safety and effectiveness in patients younger than 2 years has not been established (8.4 )
Â
8.1 Pregnancy
Voriconazole can cause fetal harm when administered to a pregnant woman. There are no available data on the use of voriconazole tablets in pregnant women. In animal reproduction studies, oral voriconazole was associated with fetal malformations in rats and fetal toxicity in rabbits. Cleft palates and hydronephrosis/hydroureter were observed in rat pups exposed to voriconazole during organogenesis at and above 10 mg/kg (0.3 times the RMD of 200 mg every 12 hours based on body surface area comparisons). In rabbits, embryomortality, reduced fetal weight and increased incidence of skeletal variations, cervical ribs and extrasternal ossification sites were observed in pups when pregnant rabbits were orally dosed at 100 mg/kg (6 times the RMD based on body surface area comparisons) during organogenesis. Rats exposed to voriconazole from implantation to weaning experienced increased gestational length and dystocia, which were associated with increased perinatal pup mortality at the 10 mg/kg dose [see Data]. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, inform the patient of the potential hazard to the fetus [see Warnings and Precautions (5.9) ].
The background risk of major birth defects and miscarriage for the indicated populations is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20% respectively.
Animal Data
Voriconazole was administered orally to pregnant rats during organogenesis (gestation days 6-17) at 10, 30, and 60 mg/kg/day. Voriconazole was associated with increased incidences of the malformations hydroureter and hydronephrosis at 10 mg/kg/day or greater, approximately 0.3 times the recommended human dose (RMD) based on body surface area comparisons, and cleft palate at 60 mg/kg, approximately 2 times the RMD based on body surface area comparisons. Reduced ossification of sacral and caudal vertebrae, skull, pubic, and hyoid bone, supernumerary ribs, anomalies of the sternebrae, and dilatation of the ureter/renal pelvis were also observed at doses of 10 mg/kg or greater. There was no evidence of maternal toxicity at any dose.
Voriconazole was administered orally to pregnant rabbits during the period of organogenesis (gestation days 7-19) at 10, 40, and 100 mg/kg/day. Voriconazole was associated with increased post-implantation loss and decreased fetal body weight, in association with maternal toxicity (decreased body weight gain and food consumption) at 100 mg/kg/day (6 times the RMD based on body surface area comparisons). Fetal skeletal variations (increases in the incidence of cervical rib and extra sternebral ossification sites) were observed at 100 mg/kg/day.
In a peri- and postnatal toxicity study in rats, voriconazole was administered orally to female rats from implantation through the end of lactation at 1, 3, and 10 mg/kg/day. Voriconazole prolonged the duration of gestation and labor and produced dystocia with related increases in maternal mortality and decreases in perinatal survival of F1 pups at 10 mg/kg/day, approximately 0.3 times the RMD.
8.2 Lactation
No data are available regarding the presence of voriconazole in human milk, the effects of voriconazole on the breastfed infant, or the effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for voriconazole tablets and any potential adverse effects on the breastfed child from voriconazole or from the underlying maternal condition.
8.3 Females and Males of Reproductive Potential
Advise females of reproductive potential to use effective contraception during treatment with voriconazole tablets. The coadministration of voriconazole with the oral contraceptive, Ortho-Novum® (35 mcg ethinyl estradiol and 1 mg norethindrone), results in an interaction between these two drugs, but is unlikely to reduce the contraceptive effect. Monitoring for adverse reactions associated with oral contraceptives and voriconazole is recommended [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
8.4 Pediatric Use
The safety and effectiveness of voriconazole tablets have been established in pediatric patients 2 years of age and older based on evidence from adequate and well-controlled studies in adult and pediatric patients and additional pediatric pharmacokinetic and safety data. A total of 105 pediatric patients aged 2 to less than 12 [N = 26] and aged 12 to less than 18 [N = 79] from two, non-comparative Phase 3 pediatric studies and eight adult therapeutic trials provided safety information for voriconazole tablets use in the pediatric population [see Adverse Reactions (6.1), Clinical Pharmacology (12.3), and Clinical Studies (14)].
Safety and effectiveness in pediatric patients below the age of 2 years has not been established. Therefore, voriconazole is not recommended for pediatric patients less than 2 years of age.
A higher frequency of liver enzyme elevations was observed in the pediatric patients [see Dosage and Administration (2.5), Warnings and Precautions (5.1), and Adverse Reactions (6.1)].
The frequency of phototoxicity reactions is higher in the pediatric population. Squamous cell carcinoma has been reported in patients who experience photosensitivity reactions. Stringent measures for photoprotection are warranted. Sun avoidance and dermatologic follow-up are recommended in pediatric patients experiencing photoaging injuries, such as lentigines or ephelides, even after treatment discontinuation [see Warnings and Precautions (5.6)].
Voriconazole tablets have not been studied in pediatric patients with hepatic or renal impairment [see Dosage and Administration (2.5, 2.6)]. Hepatic function and serum creatinine levels should be closely monitored in pediatric patients [see Dosage and Administration (2.6) and Warnings and Precautions (5.1, 5.10) ].
8.5 Geriatric Use
In multiple dose therapeutic trials of voriconazole, 9.2% of patients were ≥ 65 years of age and 1.8% of patients were ≥ 75 years of age. In a study in healthy subjects, the systemic exposure (AUC) and peak plasma concentrations (Cmax) were increased in elderly males compared to young males. Pharmacokinetic data obtained from 552 patients from 10 voriconazole therapeutic trials showed that voriconazole plasma concentrations in the elderly patients were approximately 80% to 90% higher than those in younger patients after either IV or oral administration. However, the overall safety profile of the elderly patients was similar to that of the young so no dosage adjustment is recommended [see Clinical Pharmacology (12.3)].
10 Overdosage
In clinical trials, there were three cases of accidental overdose. All occurred in pediatric patients who received up to five times the recommended intravenous dose of voriconazole. A single adverse reaction of photophobia of 10 minutes duration was reported.
There is no known antidote to voriconazole.
Voriconazole is hemodialyzed with clearance of 121 mL/min. The intravenous vehicle, SBECD, is hemodialyzed with clearance of 55 mL/min. In an overdose, hemodialysis may assist in the removal of voriconazole and SBECD from the body.
11 Description
Voriconazole, an azole antifungal agent is available as film-coated tablets for oral administration. The structural formula is:
Voriconazole is designated chemically as (2R,3S)-2-(2, 4-difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1H-1, 2, 4-triazol-1-yl)butan-2-ol with a molecular formula of C16H14F3N5O and a molecular weight of 349.31.
Voriconazole, USP drug substance is a white to almost white powder.
Voriconazole tablets contain 50 mg or 200 mg of voriconazole. The inactive ingredients include croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, povidone, pregelatinized starch (corn), titanium dioxide and triacetin.
12 Clinical Pharmacology
12.1 Mechanism of Action
Voriconazole is an antifungal drug [see Microbiology (12.4)].
12.2 Pharmacodynamics
In 10 clinical trials (N = 1121), the median values for the average and maximum voriconazole plasma concentrations in individual patients across these studies was 2.51 μg/mL (inter-quartile range 1.21 to 4.44 μg/mL) and 3.79 μg/mL (inter-quartile range 2.06 to 6.31 μg/mL), respectively. A pharmacokinetic-pharmacodynamic analysis of patient data from 6 of these 10 clinical trials (N = 280) could not detect a positive association between mean, maximum or minimum plasma voriconazole concentration and efficacy. However, pharmacokinetic/pharmacodynamic analyses of the data from all 10 clinical trials identified positive associations between plasma voriconazole concentrations and rate of both liver function test abnormalities and visual disturbances [see Adverse Reactions (6)].
A placebo-controlled, randomized, crossover study to evaluate the effect on the QT interval of healthy male and female subjects was conducted with three single oral doses of voriconazole and ketoconazole. Serial ECGs and plasma samples were obtained at specified intervals over a 24-hour post dose observation period. The placebo-adjusted mean maximum increases in QTc from baseline after 800, 1200, and 1600 mg of voriconazole and after ketoconazole 800 mg were all < 10 msec. Females exhibited a greater increase in QTc than males, although all mean changes were < 10 msec. Age was not found to affect the magnitude of increase in QTc. No subject in any group had an increase in QTc of ≥ 60 msec from baseline. No subject experienced an interval exceeding the potentially clinically relevant threshold of 500 msec. However, the QT effect of voriconazole combined with drugs known to prolong the QT interval is unknown [see Contraindications (4) and Drug Interactions (7)].
12.3 Pharmacokinetics
The pharmacokinetics of voriconazole have been characterized in healthy subjects, special populations and patients.
The pharmacokinetics of voriconazole are non-linear due to saturation of its metabolism. The interindividual variability of voriconazole pharmacokinetics is high. Greater than proportional increase in exposure is observed with increasing dose. It is estimated that, on average, increasing the oral dose from 200 mg every 12 hours to 300 mg every 12 hours leads to an approximately 2.5-fold increase in exposure (AUCÏ„); similarly, increasing the intravenous dose from 3 mg/kg every 12 hours to 4 mg/kg every 12 hours produces an approximately 2.5-fold increase in exposure (Table 12).
Table 12: Geometric Mean (% CV) Plasma Voriconazole Pharmacokinetic Parameters in Adults Receiving Different Dosing Regimens Note: Parameters were estimated based on non-compartmental analysis from 5 pharmacokinetic studies.AUC12 = area under the curve over 12 hour dosing interval, Cmax = maximum plasma concentration, Cmin = minimum plasma concentration. CV = coefficient of variation
6 mg/kg IV (loading dose)
3 mg/kg IV every 12 hours
4 mg/kg IV every 12 hours
400 mg Oral (loading dose)
200 mg Oral every 12 hours
300 mg Oral every 12 hours
N
35
23
40
17
48
16
AUC12
(μg·h/mL)
13.9 (32)
13.7 (53)
33.9 (54)
9.31 (38)
12.4 (78)
34.0 (53)
Cmax
(μg/mL)
3.13 (20)
3.03 (25)
4.77 (36)
2.30 (19)
2.31 (48)
4.74 (35)
Cmin
(μg/mL)
--
0.46 (97)
1.73 (74)
--
0.46 (120)
1.63 (79)
When the recommended intravenous loading dose regimen is administered to healthy subjects, plasma concentrations close to steady state are achieved within the first 24 hours of dosing (e.g., 6 mg/kg IV every 12 hours on day 1 followed by 3 mg/kg IV every 12 hours). Without the loading dose, accumulation occurs during twice daily multiple dosing with steady state plasma voriconazole concentrations being achieved by day 6 in the majority of subjects.
The pharmacokinetic properties of voriconazole are similar following administration by the intravenous and oral routes. Based on a population pharmacokinetic analysis of pooled data in healthy subjects (N = 207), the oral bioavailability of voriconazole is estimated to be 96% (CV 13%). Bioequivalence was established between the 200 mg tablet and the 40 mg/mL oral suspension when administered as a 400 mg every 12 hours loading dose followed by a 200 mg every 12 hours maintenance dose.
Maximum plasma concentrations (Cmax) are achieved 1-2 hours after dosing. When multiple doses of voriconazole are administered with high-fat meals, the mean Cmax and AUCÏ„ are reduced by 34% and 24%, respectively when administered as a tablet and by 58% and 37% respectively when administered as the oral suspension [see Dosage and Administration (2)].
In healthy subjects, the absorption of voriconazole is not affected by coadministration of oral ranitidine, cimetidine, or omeprazole, drugs that are known to increase gastric pH.
The volume of distribution at steady state for voriconazole is estimated to be 4.6 L/kg, suggesting extensive distribution into tissues. Plasma protein binding is estimated to be 58% and was shown to be independent of plasma concentrations achieved following single and multiple oral doses of 200 mg or 300 mg (approximate range: 0.9-15 μg/mL). Varying degrees of hepatic and renal impairment do not affect the protein binding of voriconazole.
Metabolism
In vitro studies showed that voriconazole is metabolized by the human hepatic cytochrome P450 enzymes, CYP2C19, CYP2C9 and CYP3A4 [see Drug Interactions (7)].
In vivo studies indicated that CYP2C19 is significantly involved in the metabolism of voriconazole. This enzyme exhibits genetic polymorphism [see Clinical Pharmacology (12.5)].
The major metabolite of voriconazole is the N-oxide, which accounts for 72% of the circulating radiolabelled metabolites in plasma. Since this metabolite has minimal antifungal activity, it does not contribute to the overall efficacy of voriconazole.
Excretion
Voriconazole is eliminated via hepatic metabolism with less than 2% of the dose excreted unchanged in the urine. After administration of a single radiolabelled dose of either oral or IV voriconazole, preceded by multiple oral or IV dosing, approximately 80% to 83% of the radioactivity is recovered in the urine. The majority (> 94%) of the total radioactivity is excreted in the first 96 hours after both oral and intravenous dosing.
As a result of non-linear pharmacokinetics, the terminal half-life of voriconazole is dose dependent and therefore not useful in predicting the accumulation or elimination of voriconazole.
Male and Female Patients
In a multiple oral dose study, the mean Cmax and AUCÏ„ for healthy young females were 83% and 113% higher, respectively, than in healthy young males (18-45 years), after tablet dosing. In the same study, no significant differences in the mean Cmax and AUCÏ„ were observed between healthy elderly males and healthy elderly females (> 65 years). In a similar study, after dosing with the oral suspension, the mean AUC for healthy young females was 45% higher than in healthy young males whereas the mean Cmax was comparable between genders. The steady state trough voriconazole concentrations (Cmin) seen in females were 100% and 91% higher than in males receiving the tablet and the oral suspension, respectively.
In the clinical program, no dosage adjustment was made on the basis of gender. The safety profile and plasma concentrations observed in male and female subjects were similar. Therefore, no dosage adjustment based on gender is necessary.
Geriatric Patients
In an oral multiple dose study the mean Cmax and AUCτ in healthy elderly males (≥ 65 years) were 61% and 86% higher, respectively, than in young males (18-45 years). No significant differences in the mean Cmax and AUCτ were observed between healthy elderly females (≥ 65 years) and healthy young females (18-45 years).
In the clinical program, no dosage adjustment was made on the basis of age. An analysis of pharmacokinetic data obtained from 552 patients from 10 voriconazole clinical trials showed that the median voriconazole plasma concentrations in the elderly patients (> 65 years) were approximately 80% to 90% higher than those in the younger patients (≤ 65 years) after either IV or oral administration. However, the safety profile of voriconazole in young and elderly subjects was similar and, therefore, no dosage adjustment is necessary for the elderly [see Use in Specific Populations (8.5)].
Pediatric Patients
The recommended doses in pediatric patients were based on a population pharmacokinetic analysis of data obtained from 112 immunocompromised pediatric patients aged 2 to less than 12 years and 26 immunocompromised pediatric patients aged 12 to less than 17 years.
A comparison of the pediatric and adult population pharmacokinetic data indicated that the predicted total exposure (AUC12) in pediatric patients aged 2 to less than 12 years following administration of a 9 mg/kg intravenous loading dose was comparable to that in adults following a 6 mg/kg intravenous loading dose. The predicted total exposures in pediatric patients aged 2 to less than 12 years following intravenous maintenance doses of 4 and 8 mg/kg twice daily were comparable to those in adults following 3 and 4 mg/kg IV twice daily, respectively.
The predicted total exposure in pediatric patients aged 2 to less than 12 years following an oral maintenance dose of 9 mg/kg (maximum of 350 mg) twice daily was comparable to that in adults following 200 mg oral twice daily. An 8 mg/kg intravenous dose will provide voriconazole exposure approximately 2-fold higher than a 9 mg/kg oral dose in pediatric patients aged 2 to less than 12 years.
Voriconazole exposures in the majority of pediatric patients aged 12 to less than 17 years were comparable to those in adults receiving the same dosing regimens. However, lower voriconazole exposure was observed in some pediatric patients aged 12 to less than 17 years with low body weight compared to adults [see Dosage and Administration (2.4)].
Limited voriconazole trough plasma samples were collected in pediatric patients aged 2 to less than 18 years with IA or invasive candidiasis including candidemia, and EC in two prospective, open-label, non-comparative, multicenter clinical studies. In eleven pediatric patients aged 2 to less than 12 years and aged 12 to 14 years, with body weight less than 50 kg, who received 9 mg/kg intravenously every 12 hours as a loading dose on the first day of treatment, followed by 8 mg/kg every 12 hours as an intravenous maintenance dose, or 9 mg/kg every 12 hours as an oral maintenance dose, the mean trough concentration of voriconazole was 3.6 mcg/mL (range 0.3 to 10.7 mcg/mL). In four pediatric patients aged 2 to less than 12 years and aged 12 to 14 years, with body weight less than 50 kg, who received 4 mg/kg intravenously every 12 hours, the mean trough concentration of voriconazole was 0.9 mcg/mL (range 0.3 to 1.6 mcg/mL) [see Clinical Studies (14.5)].
Patients with Hepatic Impairment
After a single oral dose (200 mg) of voriconazole in 8 patients with mild (Child-Pugh Class A) and 4 patients with moderate (Child-Pugh Class B) hepatic impairment, the mean systemic exposure (AUC) was 3.2-fold higher than in age and weight matched controls with normal hepatic function. There was no difference in mean peak plasma concentrations (Cmax) between the groups. When only the patients with mild (Child-Pugh Class A) hepatic impairment were compared to controls, there was still a 2.3-fold increase in the mean AUC in the group with hepatic impairment compared to controls.
In an oral multiple dose study, AUCÏ„ was similar in 6 subjects with moderate hepatic impairment (Child-Pugh Class B) given a lower maintenance dose of 100 mg twice daily compared to 6 subjects with normal hepatic function given the standard 200 mg twice daily maintenance dose. The mean peak plasma concentrations (Cmax) were 20% lower in the hepatically impaired group. No pharmacokinetic data are available for patients with severe hepatic cirrhosis (Child-Pugh Class C) [see Dosage and Administration (2.5)].
Patients with Renal Impairment
In a single oral dose (200 mg) study in 24 subjects with normal renal function and mild to severe renal impairment, systemic exposure (AUC) and peak plasma concentration (Cmax) of voriconazole were not significantly affected by renal impairment. Therefore, no adjustment is necessary for oral dosing in patients with mild to severe renal impairment.
In a multiple dose study of IV voriconazole (6 mg/kg IV loading dose x 2, then 3 mg/kg IV x 5.5 days) in 7 patients with moderate renal dysfunction (creatinine clearance 30-50 mL/min), the systemic exposure (AUC) and peak plasma concentrations (Cmax) were not significantly different from those in 6 subjects with normal renal function.
However, in patients with moderate renal dysfunction (creatinine clearance 30-50 mL/min), accumulation of the intravenous vehicle, SBECD, occurs. The mean systemic exposure (AUC) and peak plasma concentrations (Cmax) of SBECD were increased 4-fold and almost 50%, respectively, in the moderately impaired group compared to the normal control group.
A pharmacokinetic study in subjects with renal failure undergoing hemodialysis showed that voriconazole is dialyzed with clearance of 121 mL/min. The intravenous vehicle, SBECD, is hemodialyzed with clearance of 55 mL/min. A 4-hour hemodialysis session does not remove a sufficient amount of voriconazole to warrant dose adjustment [see Dosage and Administration (2.6)].
Patients at Risk of Aspergillosis
The observed voriconazole pharmacokinetics in patients at risk of aspergillosis (mainly patients with malignant neoplasms of lymphatic or hematopoietic tissue) were similar to healthy subjects.
Effects of Other Drugs on Voriconazole
Voriconazole is metabolized by the human hepatic cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP3A4. Results of in vitro metabolism studies indicate that the affinity of voriconazole is highest for CYP2C19, followed by CYP2C9, and is appreciably lower for CYP3A4. Inhibitors or inducers of these three enzymes may increase or decrease voriconazole systemic exposure (plasma concentrations), respectively.
The systemic exposure to voriconazole is significantly reduced by the concomitant administration of the following agents and their use is contraindicated:
Effects of Voriconazole on Other Drugs
In vitro studies with human hepatic microsomes show that voriconazole inhibits the metabolic activity of the cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP3A4. In these studies, the inhibition potency of voriconazole for CYP3A4 metabolic activity was significantly less than that of two other azoles, ketoconazole and itraconazole. In vitro studies also show that the major metabolite of voriconazole, voriconazole N-oxide, inhibits the metabolic activity of CYP2C9 and CYP3A4 to a greater extent than that of CYP2C19. Therefore, there is potential for voriconazole and its major metabolite to increase the systemic exposure (plasma concentrations) of other drugs metabolized by these CYP450 enzymes.
The systemic exposure of the following drug is significantly increased by coadministration of voriconazole and their use is contraindicated:
Two-Way Interactions:
Concomitant use of the following agents with voriconazole is contraindicated:
12.4 Microbiology
Voriconazole is an azole antifungal drug. The primary mode of action of voriconazole is the inhibition of fungal cytochrome P-450-mediated 14 alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. The accumulation of 14 alpha-methyl sterols correlates with the subsequent loss of ergosterol in the fungal cell wall and may be responsible for the antifungal activity of voriconazole.
A potential for development of resistance to voriconazole is well known. The mechanisms of resistance may include mutations in the gene ERG11 (encodes for the target enzyme, lanosterol 14-α-demethylase), upregulation of genes encoding the ATP-binding cassette efflux transporters i.e., Candida drug resistance (CDR) pumps and reduced access of the drug to the target, or some combination of those mechanisms. The frequency of drug resistance development for the various fungi for which this drug is indicated is not known.
Fungal isolates exhibiting reduced susceptibility to fluconazole or itraconazole may also show reduced susceptibility to voriconazole, suggesting cross-resistance can occur among these azoles. The relevance of cross-resistance and clinical outcome has not been fully characterized. Clinical cases where azole cross-resistance is demonstrated may require alternative antifungal therapy.
Voriconazole has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections.
Aspergillus fumigatus Aspergillus flavus Aspergillus niger Aspergillus terreus Candida albicans Candida glabrata (In clinical studies, the voriconazole MIC90 was 4 μg/mL) * Candida krusei Candida parapsilosis Candida tropicalis Fusarium spp. including Fusarium solani Scedosporium apiospermum
*In clinical studies, voriconazole MIC90 for C. glabrata baseline isolates was 4 μg/mL; 13/50 (26%) C. glabrata baseline isolates were resistant (MIC ≥ 4 μg/mL) to voriconazole. However, based on 1054 isolates tested in surveillance studies the MIC90 was 1 μg/mL.
The following data are available, but their clinical significance is unknown. At least 90 percent of the following fungi exhibit an in vitro minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoint for voriconazole against isolates of similar genus or organism group. However, the effectiveness of voriconazole in treating clinical infections due to these fungi has not been established in adequate and well-controlled clinical trials:
Candida lusitaniae Candida guilliermondii
For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.
12.5Pharmacogenomics
CYP2C19, significantly involved in the metabolism of voriconazole, exhibits genetic polymorphism. Approximately 15-20% of Asian populations may be expected to be poor metabolizers. For Caucasians and Blacks, the prevalence of poor metabolizers is 3-5%. Studies conducted in Caucasian and Japanese healthy subjects have shown that poor metabolizers have, on average, 4-fold higher voriconazole exposure (AUCÏ„) than their homozygous extensive metabolizer counterparts. Subjects who are heterozygous extensive metabolizers have, on average, 2-fold higher voriconazole exposure than their homozygous extensive metabolizer counterparts [see Clinical Pharmacology (12.3)].
13 Nonclinical Toxicology
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Two-year carcinogenicity studies were conducted in rats and mice. Rats were given oral doses of 6, 18 or 50 mg/kg voriconazole, or 0.2, 0.6, or 1.6 times the RMD on a body surface area basis. Hepatocellular adenomas were detected in females at 50 mg/kg and hepatocellular carcinomas were found in males at 6 and 50 mg/kg. Mice were given oral doses of 10, 30 or 100 mg/kg voriconazole, or 0.1, 0.4, or 1.4 times the RMD on a body surface area basis. In mice, hepatocellular adenomas were detected in males and females and hepatocellular carcinomas were detected in males at 1.4 times the RMD of voriconazole.
Voriconazole demonstrated clastogenic activity (mostly chromosome breaks) in human lymphocyte cultures in vitro. Voriconazole was not genotoxic in the Ames assay, CHO HGPRT assay, the mouse micronucleus assay or the in vivo DNA repair test (Unscheduled DNA Synthesis assay).
Voriconazole administration induced no impairment of male or female fertility in rats dosed at 50 mg/kg, or 1.6 times the RMD.
14 Clinical Studies
Voriconazole, administered orally or parenterally, has been evaluated as primary or salvage therapy in 520 patients aged 12 years and older with infections caused by Aspergillus spp., Fusarium spp., and Scedosporium spp.
14.1 Invasive Aspergillosis (IA)
Voriconazole was studied in patients for primary therapy of IA (randomized, controlled study 307/602), for primary and salvage therapy of aspergillosis (non-comparative study 304) and for treatment of patients with IA who were refractory to, or intolerant of, other antifungal therapy (non-comparative study 309/604).
The efficacy of voriconazole compared to amphotericin B in the primary treatment of acute IA was demonstrated in 277 patients treated for 12 weeks in a randomized, controlled study (Study 307/602). The majority of study patients had underlying hematologic malignancies, including bone marrow transplantation. The study also included patients with solid organ transplantation, solid tumors, and AIDS. The patients were mainly treated for definite or probable IA of the lungs. Other aspergillosis infections included disseminated disease, CNS infections and sinus infections. Diagnosis of definite or probable IA was made according to criteria modified from those established by the National Institute of Allergy and Infectious Diseases Mycoses Study Group/European Organisation for Research and Treatment of Cancer (NIAID MSG/EORTC).
Voriconazole was administered intravenously with a loading dose of 6 mg/kg every 12 hours for the first 24 hours followed by a maintenance dose of 4 mg/kg every 12 hours for a minimum of 7 days. Therapy could then be switched to the oral formulation at a dose of 200 mg every 12 hours. Median duration of IV voriconazole therapy was 10 days (range 2-85 days). After IV voriconazole therapy, the median duration of PO voriconazole therapy was 76 days (range 2-232 days).
Patients in the comparator group received conventional amphotericin B as a slow infusion at a daily dose of 1.0-1.5 mg/kg/day. Median duration of IV amphotericin therapy was 12 days (range 1-85 days). Treatment was then continued with OLAT, including itraconazole and lipid amphotericin B formulations. Although initial therapy with conventional amphotericin B was to be continued for at least two weeks, actual duration of therapy was at the discretion of the investigator. Patients who discontinued initial randomized therapy due to toxicity or lack of efficacy were eligible to continue in the study with OLAT treatment.
A satisfactory global response at 12 weeks (complete or partial resolution of all attributable symptoms, signs, radiographic/bronchoscopic abnormalities present at baseline) was seen in 53% of voriconazole treated patients compared to 32% of amphotericin B treated patients (Table 15). A benefit of voriconazole compared to amphotericin B on patient survival at Day 84 was seen with a 71% survival rate on voriconazole compared to 58% on amphotericin B (Table 13).
Table 13 also summarizes the response (success) based on mycological confirmation and species.
Table 13: Overall Efficacy and Success by Species in the Primary Treatment of Acute Invasive Aspergillosis Study 307/602
Voriconazole
Ampho BAmphotericin B followed by other licensed antifungal therapy
Stratified
Difference
(95% CI)Difference and corresponding 95% confidence interval are stratified by protocol
n/N (%)
n/N (%)
Efficacy as Primary
Therapy
     Satisfactory Global ResponseAssessed by independent Data Review Committee (DRC)
76/144 (53)
42/133 (32)
21.8%
(10.5%, 33.0%)
p < 0.0001
     Survival at Day 84Proportion of subjects alive
102/144 (71)
77/133 (58)
13.1%
(2.1%, 24.2%)
Â
Success by Species
Success n/N (%)
Overall success
76/144 (53)
42/133 (32)
Â
Mycologically confirmedNot all mycologically confirmed specimens were speciated
37/84 (44)
16/67 (24)
Â
Aspergillus spp.Some patients had more than one species isolated at baseline
     A. fumigatus
28/63 (44)
12/47 (26)
     A. flavus
3/6
4/9
     A. terreus
2/3
0/3
     A. niger
1/4
0/9
     A. nidulans
1/1
0/0
In this non-comparative study, an overall success rate of 52% (26/50) was seen in patients treated with voriconazole for primary therapy. Success was seen in 17/29 (59%) with Aspergillus fumigatus infections and 3/6 (50%) patients with infections due to non-fumigatus species [A. flavus (1/1); A. nidulans (0/2); A. niger (2/2); A. terreus (0/1)]. Success in patients who received voriconazole as salvage therapy is presented in Table 14.
Additional data regarding response rates in patients who were refractory to, or intolerant of, other antifungal agents are also provided in Table 16. In this non-comparative study, overall mycological eradication for culture-documented infections due to fumigatus and non-fumigatus species of Aspergillus was 36/82 (44%) and 12/30 (40%), respectively, in voriconazole treated patients. Patients had various underlying diseases and species other than A. fumigatus contributed to mixed infections in some cases.
For patients who were infected with a single pathogen and were refractory to, or intolerant of, other antifungal agents, the satisfactory response rates for voriconazole in studies 304 and 309/604 are presented in Table 14.
Table 14: Combined Response Data in Salvage Patients with Single Aspergillus Species (Studies 304 and 309/604)
Success
n/N
A. fumigatus
43/97 (44%)
A. flavus
5/12
A. nidulans
1/3
A. niger
4/5
A. terreus
3/8
A. versicolor
0/1
Nineteen patients had more than one species of Aspergillus isolated. Success was seen in 4/17 (24%) of these patients.
14.2 Candidemia in Non-neutropenic Patients and Other Deep Tissue Infections
Voriconazole was compared to the regimen of amphotericin B followed by fluconazole in Study 608, an open-label, comparative study in nonneutropenic patients with candidemia associated with clinical signs of infection. Patients were randomized in 2:1 ratio to receive either voriconazole (n = 283) or the regimen of amphotericin B followed by fluconazole (n = 139). Patients were treated with randomized study drug for a median of 15 days. Most of the candidemia in patients evaluated for efficacy was caused by C. albicans (46%), followed by C. tropicalis (19%), C. parapsilosis (17%), C. glabrata (15%), and C. krusei (1%).
An independent Data Review Committee (DRC), blinded to study treatment, reviewed the clinical and mycological data from this study, and generated one assessment of response for each patient. A successful response required all of the following: resolution or improvement in all clinical signs and symptoms of infection, blood cultures negative for Candida, infected deep tissue sites negative for Candida or resolution of all local signs of infection, and no systemic antifungal therapy other than study drug. The primary analysis, which counted DRC-assessed successes at the fixed time point (12 weeks after End of Therapy [EOT]), demonstrated that voriconazole was comparable to the regimen of amphotericin B followed by fluconazole (response rates of 41% and 41%, respectively) in the treatment of candidemia. Patients who did not have a 12-week assessment for any reason were considered a treatment failure.
The overall clinical and mycological success rates by Candida species in Study 150-608 are presented in Table 15.
Table 15: Overall Success Rates Sustained From EOT To The Fixed 12-Week Follow-Up Time Point By Baseline Pathogen A few patients had more than one pathogen at baseline. Patients who did not have a 12-week assessment for any reason were considered a treatment failure.
Baseline Pathogen
Clinical and Mycological Success (%)
Voriconazole
Amphotericin B →
Fluconazole
C. albicans
46/107 (43%)
30/63 (48%)
C. tropicalis
17/53 (32%)
1/16 (6%)
C. parapsilosis
24/45 (53%)
10/19 (53%)
C. glabrata
12/36 (33%)
7/21 (33%)
C. krusei
1/4
0/1
Â
In a secondary analysis, which counted DRC-assessed successes at any time point (EOT, or 2, 6, or 12 weeks after EOT), the response rates were 65% for voriconazole and 71% for the regimen of amphotericin B followed by fluconazole.
In Studies 608 and 309/604 (non-comparative study in patients with invasive fungal infections who were refractory to, or intolerant of, other antifungal agents), voriconazole was evaluated in 35 patients with deep tissue Candida infections. A favorable response was seen in 4 of 7 patients with intra-abdominal infections, 5 of 6 patients with kidney and bladder wall infections, 3 of 3 patients with deep tissue abscess or wound infection, 1 of 2 patients with pneumonia/pleural space infections, 2 of 4 patients with skin lesions, 1 of 1 patients with mixed intra-abdominal and pulmonary infection, 1 of 2 patients with suppurative phlebitis, 1 of 3 patients with hepatosplenic infection, 1 of 5 patients with osteomyelitis, 0 of 1 with liver infection, and 0 of 1 with cervical lymph node infection.
14.3 Esophageal Candidiasis (EC)
The efficacy of oral voriconazole 200 mg twice daily compared to oral fluconazole 200 mg once daily in the primary treatment of EC was demonstrated in Study 150-305, a double-blind, double-dummy study in immunocompromised patients with endoscopically-proven EC. Patients were treated for a median of 15 days (range 1 to 49 days). Outcome was assessed by repeat endoscopy at end of treatment (EOT). A successful response was defined as a normal endoscopy at EOT or at least a 1 grade improvement over baseline endoscopic score. For patients in the Intent-to-Treat (ITT) population with only a baseline endoscopy, a successful response was defined as symptomatic cure or improvement at EOT compared to baseline. Voriconazole and fluconazole (200 mg once daily) showed comparable efficacy rates against EC, as presented in Table 16.
Table 16: Success Rates in Patients Treated for Esophageal Candidiasis
Population
Voriconazole
Fluconazole
Difference %
(95% CI)Confidence Interval for the difference (Voriconazole – Fluconazole) in success rates.
PPPP (Per Protocol) patients had confirmation of Candida esophagitis by endoscopy, received at least 12 days of treatment, and had a repeat endoscopy at EOT (end of treatment).
113/115 (98.2%)
134/141 (95.0%)
3.2 (-1.1, 7.5)
ITTITT (Intent to Treat) patients without endoscopy or clinical assessment at EOT were treated as failures.
175/200 (87.5%)
171/191 (89.5%)
-2.0 (-8.3, 4.3)
Microbiologic success rates by Candida species are presented in Table 17.
Table 17: Clinical and Mycological Outcome by Baseline Pathogen in Patients with Esophageal Candidiasis (Study-150-305)
PathogenSome patients had more than one species isolated at baseline.
Voriconazole
Fluconazole
Favorable endoscopic responsePatients with endoscopic and/or mycological assessment at end of therapy.
Mycological eradication
Favorable endoscopic response
Mycological eradication
Success/Total
(%)
Eradication/Total
(%)
Success/Total
(%)
Eradication/Total (%)
C. albicans
134/140 (96%)
90/107 (84%)
147/156 (94%)
91/115 (79%)
C. glabrata
8/8 (100%)
4/7 (57%)
4/4 (100%)
1/4 (25%)
C. krusei
1/1
1/1
2/2 (100%)
0/0
14.4 Other Serious Fungal Pathogens
In pooled analyses of patients, voriconazole was shown to be effective against the following additional fungal pathogens:
Successful response to voriconazole therapy was seen in 15 of 24 patients (63%). Three of these patients relapsed within 4 weeks, including 1 patient with pulmonary, skin and eye infections, 1 patient with cerebral disease, and 1 patient with skin infection. Ten patients had evidence of cerebral disease and 6 of these had a successful outcome (1 relapse). In addition, a successful response was seen in 1 of 3 patients with mixed organism infections.
Nine of 21 (43%) patients were successfully treated with voriconazole. Of these 9 patients, 3 had eye infections, 1 had an eye and blood infection, 1 had a skin infection, 1 had a blood infection alone, 2 had sinus infections, and 1 had disseminated infection (pulmonary, skin, hepatosplenic). Three of these patients (1 with disseminated disease, 1 with an eye infection and 1 with a blood infection) had Fusarium solani and were complete successes. Two of these patients relapsed, 1 with a sinus infection and profound neutropenia and 1 post surgical patient with blood and eye infections.
14.5Pediatric Studies
A total of 22 patients aged 12 to 18 years with IA were included in the adult therapeutic studies. Twelve out of 22 (55%) patients had successful response after treatment with a maintenance dose of voriconazole 4 mg/kg every 12 hours.
Fifty-three pediatric patients aged 2 to less than 18 years old were treated with voriconazole in two prospective, open-label, non-comparative, multicenter clinical studies.
One study was designed to enroll pediatric patients with IA or infections with rare molds (such as Scedosporium or Fusarium). Patients aged 2 to less than 12 years and 12 to 14 years with body weight less than 50 kg received an intravenous voriconazole loading dose of 9 mg/kg every 12 hours for the first 24-hours followed by an 8 mg/kg intravenous maintenance dose every 12 hours. After completing 7 days of intravenous therapy patients had an option to switch to oral voriconazole. The oral maintenance dose was 9 mg/kg every 12 hours (maximum dose of 350 mg). All other pediatric patients aged 12 to less than 18 years received the adult voriconazole dosage regimen. Patients received voriconazole for at least 6 weeks and up to a maximum of 12 weeks.
The study enrolled 31 patients with possible, proven, or probable IA. Fourteen of 31 patients, 5 of whom were 2 to less than 12 years old and 9 of whom were 12 to less than 18 years old, had proven or probable IA and were included in the modified intent-to-treat (MITT) efficacy analyses. No patients with rare mold were enrolled. A successful global response was defined as resolution or improvement in clinical signs and symptoms and at least 50% resolution of radiological lesions attributed to IA. The overall rate of successful global response at 6 weeks in the MITT population is presented in Table 18 below.
Table 18: Global Response Global response rate was defined as the number of subjects with a successful response (complete or partial) as a percentage of all subjects (including subjects with an indeterminate or missing response) at 6 weeks in the MITT population. in Patients with Invasive Aspergillosis, Modified Intent-to-Treat (MITT)The Modified Intent-to-Treat (MITT) population was defined as all subjects who received at least 1 dose of study drug and who were diagnosed with proven or probable IA as defined by the modified EORTC/MSG criteria. Population
Parameter
Global Response at Week 6
Ages 2 - < 12 Years
N = 5
Ages 12 - < 18 Years
N = 9
Overall
N = 14
Number of successes, n (%)
2 (40%)
7 (78%)
9 (64%)
The second study enrolled 22 patients with invasive candidiasis including candidemia (ICC) and EC requiring either primary or salvage therapy. Patients with ICC aged 2 to less than 12 years and 12 to 14 years with body weight less than 50 kg received an intravenous voriconazole loading dose of 9 mg/kg every 12 hours for the first 24 hours followed by an 8 mg/kg intravenous maintenance dose every 12 hours. After completing 5 days of intravenous therapy patients had an option to switch to oral voriconazole. The oral maintenance dose was 9 mg/kg every 12 hours (maximum dose of 350 mg). All other pediatric patients aged 12 to less than 18 years received the adult voriconazole dosage regimen. Voriconazole was administered for at least 14 days after the last positive culture. A maximum of 42 days of treatment was permitted.
Patients with primary or salvage EC aged 2 to less than 12 years and 12 to 14 years with body weight less than 50 kg received an intravenous voriconazole dose of 4 mg/kg every 12 hours followed by an oral voriconazole dose of 9 mg/kg every 12 hours (maximum dose of 350 mg) when criteria for oral switch were met. All other pediatric patients aged 12 to less than 18 years received the adult voriconazole dosage regimen. Voriconazole was administered for at least 7 days after the resolution of clinical signs and symptoms. A maximum of 42 days of treatment was permitted.
For EC, study treatment was initiated without a loading dose of intravenous voriconazole. Seventeen of these patients had confirmed Candida infection and were included in the MITT efficacy analyses. Of the 17 patients included in the MITT analyses, 9 were 2 to less than 12 years old (7 with ICC and 2 with EC) and 8 were 12 to less than 18 years old (all with EC). For ICC and EC, a successful global response was defined as clinical cure or improvement with microbiological eradication or presumed eradication. The overall rate of successful global response at EOT in the MITT population is presented in Table 19 below.
Table 19: Global Response Global response was determined based on the investigator’s assessment of clinical and microbiological response in the Modified Intent-to-Treat (MITT) analysis population at end of treatment. Subjects with missing data or whose response was deemed indeterminate were considered failures. at the End of Treatment in the Treatment of Invasive Candidiasis with Candidemia and Esophageal Candidiasis Modified Intent-to-Treat (MITT) PopulationThe MITT population was defined as all subjects who received at least 1 dose of study drug and who had microbiologically confirmed invasive candidiasis with candidemia (ICC) and EC, or subjects with EC who had at least confirmation of oropharyngeal candidiasis without confirmation on esophagoscopy.
Parameter
Global Response at End of Treatment
EC
N = 10
ICCAll subjects with ICC were aged 2 to less than 12.
N = 7
Ages 2 - < 12
N = 2
Ages 12 - < 18
N = 8
Overall
N = 10
Overall
N = 7
Number of successes, n (%)
2 (100%)
5 (63%)
7 (70%)
6 (86%)
Â
16 How Supplied/storage And Handling
16.1 How Supplied
Voriconazole Tablets are available containing 50 mg or 200 mg of voriconazole, USP.
The 50 mg tablets are white to off-white, film coated, oval, unscored tablets debossed with V26 on one side and plain on the other. They are available as follows:
NDC 0378-1626-93bottles of 30 tablets
The 200 mg tablets are white to off-white, film coated, capsule shaped, unscored tablets debossed with M164 on one side and plain on the other. They are available as follows:
NDC 0378-1640-93bottles of 30 tablets
16.2 Storage
Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.]
Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure.
17 Patient Counseling Information
Advise the patient to read the FDA-approved patient labeling (Patient Information).
Visual Disturbances: Patients should be instructed that visual disturbances such as blurring and sensitivity to light may occur with the use of voriconazole tablets.
Photosensitivity:
• Advise patients of the risk of photosensitivity (with or without concomitant methotrexate), accelerated photoaging, and skin cancer.• Advise patients that voriconazole tablets can cause serious photosensitivity and to immediately contact their healthcare provider for new or worsening skin rash.• Advise patients to avoid exposure to direct sun light and to use measures such as protective clothing and sunscreen with high sun protection factor (SPF).
Embryo-Fetal Toxicity:
• Advise female patients of the potential risks to a fetus.• Advise females of reproductive potential to use effective contraception during treatment with voriconazole tablets.
Patient Information
Voriconazole Tablets, for oral use
(vor" i kon' a zole)
Read the Patient Information that comes with voriconazole tablets before you start taking them and each time you get a refill. There may be new information. This information does not take the place of talking with your healthcare provider about your condition or treatment.
What are voriconazole tablets?
Voriconazole tablets are a prescription medicine used to treat certain serious fungal infections in your blood and body. These infections are called “aspergillosis,†“esophageal candidiasis,†“Scedosporium,†“Fusarium,†and “candidemiaâ€.
It is not known if voriconazole is safe and effective in children younger than 2 years old.
Do not take voriconazole tablets if you:
• are allergic to voriconazole or any of the ingredients in voriconazole tablets. See the end of this leaflet for a complete ul of ingredients in voriconazole tablets.• are taking any of the following medicines:
o pimozideo rifampino efavirenzo ergotamine, dihydroergotamine (ergot alkaloids)o tolvaptano venetoclax
o quinidineo carbamazepineo ritonaviro St. John’s Worto (herbal supplement)o lurasidone
o sirolimuso long-acting barbiturates like phenobarbitalo rifabutino naloxegolo ivabradine
Ask your healthcare provider or pharmacist if you are not sure if you are taking any of the medicines uled above.
Do not start taking a new medicine without talking to your healthcare provider or pharmacist.
Before you take voriconazole tablets, tell your healthcare provider about all of your medical conditions, including if you:
• have or ever had heart disease, or an abnormal heart rate or rhythm. Your healthcare provider may order a test to check your heart (EKG) before starting voriconazole tablets.• have low potassium levels, low magnesium levels, and low calcium levels. Your healthcare provider may do blood tests before starting and during treatment with voriconazole tablets.• have liver or kidney problems. Your healthcare provider may do blood tests to make sure you can take voriconazole tablets.• have trouble digesting dairy products, lactose (milk sugar), or regular table sugar. Voriconazole tablets contain lactose.• are pregnant or plan to become pregnant. Voriconazole can harm your unborn baby. Talk to your healthcare provider if you are pregnant or plan to become pregnant. Women who can become pregnant should use effective birth control while taking voriconazole tablets. Talk to your healthcare provider about birth control methods that may be right for you.• are breastfeeding or plan to breastfeed. It is not known if voriconazole passes into breast milk. Talk to your healthcare provider about the best way to feed your baby if you take voriconazole tablets.
Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins and herbal supplements.
Voriconazole tablets may affect the way other medicines work, and other medicines may affect how voriconazole tablets work.
Know what medicines you take. Keep a ul of them to show your healthcare provider or pharmacist when you get a new medicine.
How should I take voriconazole tablets?
• Voriconazole may be prescribed to you as:
o Voriconazole tablets• Take voriconazole tablets exactly as your healthcare provider tells you to.• Take voriconazole tablets at least 1 hour before or at least 1 hour after meals.• If you take too many voriconazole tablets, call your healthcare provider or go to the nearest hospital emergency room.
What should I avoid while taking voriconazole tablets?
• You should not drive at night while taking voriconazole tablets. Voriconazole tablets can cause changes in your vision such as blurring or sensitivity to light.• Do not drive or operate machinery, or do other dangerous activities until you know how voriconazole tablets affect you.• Avoid direct sunlight. Voriconazole tablets can make your skin sensitive to the sun and the light from sunlamps and tanning beds. You could get a severe sunburn. Use sunscreen and wear a hat and clothes that cover your skin if you have to be in sunlight. Talk to your healthcare provider if you get sunburn.
What are possible side effects of voriconazole tablets?
Voriconazole tablets may cause serious side effects including:
• liver problems. Symptoms of liver problems may include:
o itchy skino flu-like symptoms
o yellowing of your eyeso nausea or vomiting
o feeling very tired
• vision changes. Symptoms of vision changes may include:
o blurred visiono changes in the way you see colorso sensitivity to light or sun (photosensitivity). Voriconazole tablets can cause serious photosensitivity. There is an increased chance of skin toxicity while taking voriconazole tablets. This can happen with or without taking other medicines like methotrexate. Photosensitivity reactions may also increase your risk of:
o faster skin aging from the suno skin cancer Call your healthcare provider right away if you get a new skin rash or your skin rash gets worse.• serious heart problems. Voriconazole tablets may cause changes in your heart rate or rhythm, including your heart stopping (cardiac arrest).• allergic reactions. Symptoms of an allergic reaction may include:
o fevero chest tightnesso nausea
o sweatingo trouble breathingo itching
o feels like your heart is beating fast (tachycardia)o feel fainto skin rash
• kidney problems. Voriconazole tablets may cause new or worse problems with kidney function, including kidney failure. Your healthcare provider should check your kidney function while you are taking voriconazole tablets. Your healthcare provider will decide if you can keep taking voriconazole tablets.• serious skin reactions. Symptoms of serious skin reactions may include:
o rash or hiveso mouth soreso bulering or peeling of your skino trouble swallowing or breathing• adrenal gland problems:
o Voriconazole tablets may cause reduced adrenal function (adrenal insufficiency).o Voriconazole tablets may cause overactive adrenal function (Cushing’s syndrome) when voriconazole is used at the same time with corticosteroids. Symptoms of adrenal insufficiency include:
o feeling tiredo nausea and vomitingo abdominal pain
o lack of energyo feeling dizzy or lightheaded
o weaknesso weight loss
 Symptoms of Cushing’s syndrome include:
o weight gaino thinning skino excessive hair growth
o fatty hump between the shoulders (buffalo hump) and a rounded face (moon face)o bruising easilyo excessive sweating
o darkening of the skin on the stomach, thighs, breasts, and armso high blood sugar
• bone problems. Voriconazole tablets may cause weakening of bones and bone pain. Tell your healthcare provider if you have bone pain.
Call your healthcare provider or go to the nearest hospital emergency room right away if you have any of the symptoms uled above.Â
The most common side effects of voriconazole tablets in adults include:
o vision changeso nauseao hallucinations (seeing or hearing things that are not there)
o rasho headacheo abnormal liver function testso chills
o vomitingo fast heart beat (tachycardia)o fever
The most common side effects of voriconazole in children include:
o fevero diarrheao low platelet countso abnormal liver function testso low blood calcium levelso low blood phosphate levelso vision changeso rasho stomach pain
o high blood pressureo cougho low blood pressureo swelling in the arms and legso high blood sugar levelso headacheo fast heart beat (tachycardia)o nose bleedso low blood potassium levels
o inflammation of mucous membraneso hallucinations (seeing or hearing things that are not there)o coughing up bloodo constipationo low blood magnesium levelso fullness of the stomach areao vomitingo nauseao upper respiratory tract infection
Tell your healthcare provider if you have any side effect that bothers you or that does not go away.
These are not all the possible side effects of voriconazole tablets.
Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.
How should I store voriconazole tablets?
• Store voriconazole tablets at room temperature, 20° to 25°C (68° to 77°F).• Keep voriconazole tablets in a tightly closed container.• Safely throw away medicine that is out of date or no longer needed.• Keep voriconazole tablets, as well as all other medicines, out of the reach of children.
General information about the safe and effective use of voriconazole tablets
Medicines are sometimes prescribed for purposes other than those uled in a Patient Information leaflet. Do not use voriconazole tablets for a condition for which they were not prescribed. Do not give voriconazole tablets to other people, even if they have the same symptoms that you have. They may harm them.
Â
You can ask your healthcare provider or pharmacist for information about voriconazole tablets that is written for health professionals.
What are the ingredients in voriconazole tablets?
Active ingredient: voriconazole.
Inactive ingredients: croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, povidone, pregelatinized starch (corn), titanium dioxide and triacetin.
Â
Manufactured for: Mylan Pharmaceuticals Inc., Morgantown, WV 26505 U.S.A.
Manufactured by: Mylan Laboratories Limited, Hyderabad – 500 096, India
Â
For more information, call Mylan at 1-877-446-3679 (1-877-4-INFO-RX).
Â
The brands uled are trademarks of their respective owners.
This Patient Information has been approved by the U.S. Food and Drug Administration.
Manufactured for: Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A.
Manufactured by: Mylan Laboratories Limited Hyderabad – 500 096, India
750XXXXX
Revised: 6/2023MX:VORIC:RX1
Principal Display Panel 50 Mg
NDC 0378-1626-93
Voriconazole Tablets 50 mg
Rx only             30 Tablets
Each film-coated tablet contains:Voriconazole, USPÂ Â Â Â Â Â Â Â Â Â 50 mg
Usual Dosage: See accompanyingprescribing information.
Keep this and all medication out of the reach of children.
Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.]
Manufactured for: Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A.
Made in India
Mylan.com
RMX1626H6
Dispense in a tight, light-resistantcontainer as defined in the USPusing a child-resistant closure.
Keep container tightly closed.
Code No.: MH/DRUGS/25/NKD/89
Principal Display Panel 200 Mg
NDC 0378-1640-93
Voriconazole Tablets 200 mg
Rx only               30 Tablets
Each film-coated tablet contains:Voriconazole, USPÂ Â Â Â Â Â Â Â Â Â Â 200 mg
Usual Dosage: See accompanyingprescribing information.
Keep this and all medication out of the reach of children.
Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.]
Manufactured for: Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A.
Made in India
Mylan.com
RMX1640H6
Dispense in a tight, light-resistantcontainer as defined in the USPusing a child-resistant closure.
Keep container tightly closed.
Code No.: MH/DRUGS/25/NKD/89
DISCLAIMER:
"This tool does not provide medical advice, and is for informational and educational purposes only, and is not a substitute for professional medical advice, treatment or diagnosis. Call your doctor to receive medical advice. If you think you may have a medical emergency, please dial 911."
"Do not rely on openFDA to make decisions regarding medical care. While we make every effort to ensure that data is accurate, you should assume all results are unvalidated. We may limit or otherwise restrict your access to the API in line with our Terms of Service."
"This product uses publicly available data from the U.S. National Library of Medicine (NLM), National Institutes of Health, Department of Health and Human Services; NLM is not responsible for the product and does not endorse or recommend this or any other product."
PillSync may earn a commission via links on our site